
On generalized coupling
coefficients of the special
orthogonal group

Bachelorthesis

Faculty of physics

University of Bielefeld

submitted by:

Oscar Werner
matriculation number: 2864851

Supervisor and first reviewer: Prof. Dr. Dietrich Bödeker

Second reviewer: Rasmus Nielsen

Bielefeld, 27/10/2023

Contents

Contents

1. Introduction 1

2. Basics 2
2.1. Group definition . 2
2.2. Finite groups . 3

2.2.1. Ex.: Cyclic group of order 4: Z4 . 3
2.2.2. Ex.: The symmetric group of degree 3: S3 3

2.3. Countably infinite groups . 5
2.3.1. Ex.: Additive group of integers . 5
2.3.2. Ex.: Multiplicative group of rational numbers 5

2.4. Continuous groups . 6
2.4.1. Ex.: Rotations in a plane: SO(2) . 6
2.4.2. Ex.: General linear group: GL(n,R/C) . 6

2.5. Representation theory . 7
2.5.1. Trivial representation and faithfulness . 7
2.5.2. Ex.: The representations of S3 . 7
2.5.3. Equivalent representations . 8
2.5.4. Reducible and irreducible representations 8
2.5.5. Restriction to a subgroup . 9

2.6. The Lie-Algebra . 11
2.6.1. Ex.: SO(2) . 11
2.6.2. Manifolds and tangent spaces . 11
2.6.3. Commutation relation of the Lie-algebra . 13
2.6.4. Generalization to SO(3) and SO(N) . 14
2.6.5. Lie-Algebra representations . 15

2.7. Tensor product of representations and coupling coefficients 16
2.7.1. Definition and Properties . 16
2.7.2. Tensor product representations . 17
2.7.3. Coupling-coefficients . 18

3. Computation of coupling coefficients 20
3.1. Method . 20

3.1.1. Ex.: SO(5) coupling coefficients . 23

Contents

3.2. Implementation in python . 26
3.2.1. Ex.1: 1d-nullspace

(
1
2

1
2

)
⊗
(
1
2
0
)
→
(
1
2
0
)

. 27
3.2.2. Ex.2: 2d-nullspace (1 0) ⊗

(
1 1

2

)
→
(
1 1

2

)
. 29

4. Fusion coefficients for fuzzy harmonics 32
4.1. Fuzzy harmonics on S2 . 32

4.1.1. Ex.: 2d-representation of Ŷ m
l . 34

4.2. Fuzzy harmonics on S4 . 35
4.2.1. Ex.: 4d-representation of ŶL⃗ . 39

5. Conclusion 42

A. Complete python implementation 43
A.1. Coupling coefficients of SO(5) . 43
A.2. Fusion coefficients for fuzzy harmonics . 51

A.2.1. Fuzzy harmonics on S2 . 51
A.2.2. Fuzzy harmonics on S4 . 54

1. Introduction 1

1. Introduction

2. Basics 2

2. Basics

2.1. Group definition
Because the concept of a group builds the foundation of this Bachelor thesis, it is critical to first give a
precise definition of this term. This is important because the way the term group is used colloquially
differs from the meaning that physicist and mathematicians attribute to it. In the following chapter
firstly the axioms that are used to rigorously define a group are presented, after that a few examples
can be found that hopefully convey, why the concept is of great use in many areas of physics.

Definition:
A group is a nonempty set G of elements {gα}, together with a binary
composition "◦", that fulfills the following four axioms: [Zee16]

1. Closure: if to elements gα, gβ of G are composed, the result gα ◦ gβ is also an
element of G

2. Associativity: the composition action is associative, that is:
(gα ◦ gβ) ◦ gγ = gα ◦ (gβ ◦ gγ)

3. Existence of the identity: there is one special element I , called the identity, in G
which has the special property that composing I with any element in G results in
the same element : I ◦ gα = gα ◦ I = gα

4. Existence of the inverse: for every group element gα there has to exist a unique
group element g−1

α , so that the composition of these two elements results in the
identity: gα ◦ g−1

α = I

So strictly speaking a group is a pair (G, ◦) of a underlying set and a operation on this set, that takes
in two inputs and spits out another member of the set. In the following, this notation will be slightly
abused and the group is simply referred to as G.
To distinguish different elements of G the label α is used above. For the moment it is not further
specified what this label looks like, it can be finite, countably infinite or even continuous. Examples
for each of these three options are presented in the following:

2. Basics 3

2.2. Finite groups
Finite groups have application amongst other in theoretical solid state physics, where they are used
for describing the point symmetries of a crystal lattice. [Czy08] They also find application in the
study of elementary particles for describing their internal (finite) symmetries and several other areas
of physics. (see e.g.: [Geo00, Chapter 1], [Ish+10], [Lom59], [GL12])
Since the main part of the thesis deals with continuous groups,only two examples are presented.

2.2.1. Ex.: Cyclic group of order 4: Z4

One of the most simple examples of a finite group is the set of complex numbers {1,−1, i,−i}
together with the usual multiplication. It is very easy to check that all the axioms from chapter 2.1
are fulfilled. The number of elements in any finite group is called order of the group, which is 4 in
our case. It is also noteworthy that although here the composition is commutative, that is
gα ◦ gβ = gβ ◦ gα for every group element gα, gβ , this is not required in general. Groups that have a
commutative composition law are called abelian.

2.2.2. Ex.: The symmetric group of degree 3: S3

One of the most important families of finite groups is Sn, the so called symmetric group of degree n.
It is the set of the bijective functions on a set of n objects on itself and is of order n!.1 Such a
function is called a permutation and is said to be automorph. By looking at a specific example,
namely n = 3, many interesting features already emerge, that can be generalised to symmetric
groups of higher degrees, other finite groups and even continuous groups.
The goal is two collect all the different permutation that can be done to a set of three objects
X = {1, 2, 3}. For that a commonly used notation is the following: One particular permutation is
written using two lines, in the first line the elements of X , below each element the picture under the
specific permutation are listed. In this notation the elements of S3 are the following [BC79]:

I =

(
1 2 3
1 2 3

)
, σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2 3
3 1 2

)
,

τ1 =

(
1 2 3
1 3 2

)
, τ2 =

(
1 2 3
3 2 1

)
, τ3 =

(
1 2 3
2 1 3

) (2.1)

The element σ1 for example can be read as: "1" gets mapped on "2", "2" gets mapped on "3" and "3"
gets mapped on "1". It might cause some confusion that ther are now two sets X and S3. To resolve
this, it is helpful to view the elements of S3 as transformations applied to the set X . This viewpoint
of group elements as transformations on a given object, actually is a very common strategy to
visualize any given group, continuous or discrete.[Zee16]

1A function which maps onto itself is called a endomorphism, for it to be bijective every element of the set has to be
mapped to exactly one member of the set (not necessarily a different one)[Tre07]

2. Basics 4

Now of course it has to be specified, what the composition looks like for the elements listed above.
For that a specific example is looked at, where by convention the right permutation is carried out
first:

σ1 ◦ τ1 =
(
1 2 3
2 3 1

)
◦
(
1 2 3
1 3 2

)
=

(
1 2 3
2 1 3

)
= τ3 (2.2)

This result can be obtained as follows: τ1 tells that "1" is mapped on itself, σ1 then maps "1" on "2"
so overall "1" gets mapped on "2". "2" gets mapped by τ1 on "3", which is subsequently mapped on
"1" by σ1.
One interesting property emerges, by looking at the same two elements σ1, τ1 and composing them
in flipped order:

τ1 ◦ σ1 =

(
1 2 3
1 3 2

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
= τ2 (2.3)

The result of the composition depends on the order of the elements involved. Like mentioned before,
the group definition doesn’t demand the operation to be commutative. As a result there are groups
which elements don’t commute. Those groups are called non-abelian and S3 is the smallest example
of such a group, with only 3! = 6 elements.
Although it is relatively easy to see how two elements of S3 are composed, the procedure is not very
intuitive. There is however a very nice visual way to look at S3 that relies on the interpretation of
group objects as transformations on the set X . For that the three objects in X are interpreted as the
three vertices of an equilateral triangle, then the elements of S3 can be viewed as the rotations and
reflections that transfer the triangle onto itself. If two groups are obtained by one another by just
renaming or reinterpreting the elements like it was done here, the two groups are said to be
isomorphic to one another. It is fairly obvious that renaming the objects doesn’t change the structure
of the group which is after all the thing that characterizes it, so two isomorphic groups really are
basically identical.
Back to S3 and it’s interpretation as transformations on an equilateral triangle. The six possible
actions are shown in the following figure:

2. Basics 5

Figure 2.1.: All possible transformation that transfer the equilateral triangle onto itself, corresponding to the 6
elements of S3 [SK11]

As one can see, the group splits into two parts, the reflections on the right hand side and the rotations
on the left hand side of the figure above. One can easily check that the group elements I, σ1, σ2 in
2.1 correspond to the rotations, while τ1, τ2, τ3 represent the reflections of the triangle. In this picture
the composition of two elements of S3 simply becomes the back to back execution of any two
rotations/reflections. This also makes the non-commutativity of the group apparent; it makes a
difference to first reflect along a given axis and then rotate versus doing it the other way around.

2.3. Countably infinite groups
Although the concept of a group with infinitely many members can seem overwhelming at first, there
are a few easy examples. Because these groups don’t play any major role in the thesis, again only
two examples are presented.

2.3.1. Ex.: Additive group of integers
The integers together with addition as the composition law forms a group. Again it can be easily
checked that all the axioms are fulfilled; 0 is the neutral element, for each element n there is an
inverse element −n, the group is closed and the composition law is associative.

2.3.2. Ex.: Multiplicative group of rational numbers
Note that the integers together with multiplication don’t form a group because the inverse of any
element n, which is 1

n
is not contained within the set of integers. The rational numbers however have

the property that the multiplicative inverse is contained within themselves. So the set of rational
numbers

{
n
m

}
together with multiplication forms a group.

2. Basics 6

2.4. Continuous groups
The concept of continuous groups is needed if discrete indices don’t suffice to characterize a given
group element. Instead continuous indices are used to label the different group elements.

2.4.1. Ex.: Rotations in a plane: SO(2)
The symmetry group of a circle in 2-dimensional Euclidean space forms a group, known as the
special ortogonal group in 2 dimensions or shortly SO(2). The different group elements are labelled
by the angle of rotation, the composition is simply the back-to-back execution of two 2-d rotations
which is obviously again a 2-d rotation. As is known from various physic problems, rotations by an
angle of ϑ can be represented by a 2⊗ 2 matrix:

R(ϑ) =

(
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)
(2.4)

The set of matrices {R(ϑ), ϑ ∈ [0, 2π)} are all the matrices that are orthogonal, that is
R(ϑ)T ·R(ϑ) = 1 and have determinant of 1. These two condition ensure that lengths and angles
between vectors in the plane are preserved like it can be expected by a rotation.[Zee16]

2.4.2. Ex.: General linear group: GL(n,R/C)
As was shown in the example above a set of matrices together with ordinary matrix multiplication
can be seen as a group, as long as all the matrices have an inverse, or formulated differently a
nonzero determinant. This group is called the General Linear Group and denoted by GL(n,R/C)
depending on weather the matrices have real or complex components.2

2even more general one could look at all linear bijective maps from any vector space V onto itself. Then this set of maps
also fulfills the group axioms and is known as the automorphism group of V or short Aut(V). For the special case of
V = Rn/Cn, Aut(V) is isomorphic to GL(n,R/C). [Böh11]

2. Basics 7

2.5. Representation theory
In the last chapter it was mentioned that the symmetry group of a circle can be represented by a set
of matrices {R(ϑ)}. Although it was quite intuitive what was meant by that, there is a precise
meaning for the term representation of a group G. The basic idea is to create a correspondence
between each group element gα and a d⊗ d matrix D(gα), where d is known as the dimension of the
representation. Then these matrices are said to represent the group G if

D(gα) ·D(gβ) = D(gα ◦ gβ) (2.5)

for any two group elements gα, gβ . Formally the representation then is the map from the group onto
the General Linear Group GL(V), with V being either Rn or Cn. Condition (2.5) requires this map
to be homomorphic, i.e. it has to preserve the group operation.
In physics the line between a given group and a representation of this group often blurs; for example
when talked about a 2-d rotation, a physicists will mostly have the matrices given in (2.4) in mind.

2.5.1. Trivial representation and faithfulness
Note that (2.5) allows the creation of a 1-dimensional representation by associating every group
element with the number 1. This works for any group and is known as the trivial representation. It’s
obvious that all the information that is contained in the group is lost by representing it trivially.
Considering this, a natural thing to do is analyzing if different group elements are always mapped
onto different matrices, that is if the representation is injective. If that is the case, the representation
is called faithful [Tre07]. In this case, the group structure is preserved and no information is lost.

2.5.2. Ex.: The representations of S3

To make things clearer, next the different possible representations of the group S3 that was
introduced in chapter 2.2.2 are presented. Like mentioned above every group, and therefore also S3,
have a one-dimensional trivial representation defined by D(1)(g) = 1 ∀g ∈ S3. The symmetric group
also has a second one-dimensional representation D(1′) that is given by the signum of any group
element. To understand this signum one can make use of the fact that any given permutation can be
written as a product of so called transpositions; i.e. an exchange of two elements of the underlying
set X . The signum-function then maps any permutation onto 1 or −1 depending on weather it can be
obtained by an even or uneven number of transpositions respectively[DL15]. For S3 this results in:

D(1′)(I) = D(1′)(σ1) = D(1′)(σ2) = 1 (2.6)

D(1′)(τ1) = D(1′)(τ2) = D(1′)(τ3) = −1 (2.7)

In the interpretation of S3 as transformations on the equilateral triangle, each reflection is
represented by −1, while the two rotations and the identity are represented by 1.

2. Basics 8

Since the triangle lives in the 2-dimensional plane, and any linear tranformation of that plane can be
described by a 2⊗ 2 matrix, a 2-dimensional representation of S3 basically suggests itself. For the
rotation part one simply has to evaluate the matrices in eq. (2.4) for ϑ = 2π

3
and ϑ = 4π

3
.

D(2)(I) =

(
1 0
0 1

)
, D(2)(σ1) =

1

2

(
−1 −

√
3√

3 −1

)
, D(2)(σ2) =

1

2

(
−1

√
3

−
√
3 −1

)
(2.8)

The three matrices representing the reflections are given subsequently without derivation:

D(2)(τ1) =

(
1 0
0 −1

)
, D(2)(τ2) =

1

2

(
−1 −

√
3

−
√
3 1

)
, D(2)(τ3) =

1

2

(
−1

√
3√

3 1

)
(2.9)

2.5.3. Equivalent representations
Of course the basis in which the representation matrices are written in is free to choose. As it is often
the case for physics problems, a basis change can make a seemingly hard problem a lot easier. How
to perform this basis change is well known from linear algebra; the matrix D, written in the new
basis is given by S−1DS with S inhibiting all the information about the basis change. If two
representations D′, D are related by such a similarity transformation, that is D′(g) = S−1D(g)S ∀g,
they are called equivalent. [Zee16]; [DL15]

2.5.4. Reducible and irreducible representations
To understand the concept of reducible and irreducible representations again the example of S3 is
looked at. S3 has two 1-dimensional representations D(1) and D(1′) as well as a 2-dimensional one
D(2). Using these, it is possible to create the following 3-dimensional representation:

D(g) =

(
D(2)(g) 0

0 D(1)(g)

)
(2.10)

It is easy to check that this new representation inherits the requirement (2.5) from D(2) and D(1).
Nevertheless this 3-dimensional representation shouldn’t count as a proper new representation; it is
just a direct sum of smaller representations usually written as D(g) = D(2)(g)⊕D(1)(g). Whenever
the representation matrix is of this block-diagonal form for every group element g it is called
reducible, when not it is called irreducible. In the example (2.10) it was very easy to see that all
matrices have this block-diagonal form, after all it was constructed to have exactly this form.
However it isn’t always this easy to spot whether a representation is reducible or not. Thinking back
to chapter 2.5.3 it is possible to construct an equivalent representation by performing a similarity
transformation. After this basis change the block diagonal form is most likely gone, depending on
the exact form of the change of basis matrix. In fact an example of this was already presented with

2. Basics 9

the two-dimensional representation of SO(2) in (2.4). These 2⊗ 2 matrix can be diagonalized for
any value of ϑ in the following way:(

e−iϑ 0
0 eiϑ

)
︸ ︷︷ ︸

R′(ϑ)

=

(
i −i
1 1

)
︸ ︷︷ ︸

S−1

·
(

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)
︸ ︷︷ ︸

R(ϑ)

· 1
2

(
−i 1
i 1

)
︸ ︷︷ ︸

S

(2.11)

So it can be concluded that the matrices from (2.4), that are usually used to describe rotations in the
plane form a reducible representation of SO(2). Note that the diagonalization can only be done
using complex entries in the change of basis matrix S.
This result can be generalized to other abelian groups. A well known fact from linear algebra is that
two matrices are simultaneously diagonalizable if and only if they commute. [Fis09] Since the
representation matrices of abelian groups commute, which is demanded by 2.5, it is possible to
diagonalize the representation matrices for every group element in an abelian group. So any
representation is of block diagonal form with blocks of size 1. In conclusion every irreducible
representation of an abelian group is 1-dimensional and in general complex.

2.5.5. Restriction to a subgroup
In the last chapter the concept or irreducible representations was introduced. There it was explained
that a representation D(g) is reducible if it can be block-diagonalized for every g ∈ G. It is fairly
obvious that if G has a proper subgroup H with elements h ∈ H , D(h) is a representation of H . To
see this fact just ignore all the matrices that represent elements that are in G but not in H , the
requirement of H to be a subgroup guarantees that this new set of matrices D(h) is closed under
matrix multiplication. However, while the representation of G was irreducible, this is in general no
longer the case if the view is restricted to H . This makes sense because the view is limited to fewer
matrices, so in most cases it is possible to block-diagonalize this matrices and end up with a direct
sum of smaller irreducible representations of H

Ex.: SO(3) → SO(2)

One group where the restriction to a subgroup can be easily understood is SO(3), the group of
rotations in 3-dimensional space. An irreducible 3-dimensional representation D(3) of SO(3) is given
by the following set of matrices labelled by 3 angles ϑ1, ϑ2, ϑ3. In the following expression
abbreviations are used: sin(ϑi) = s(ϑi), cos(ϑi) = c(ϑi)

D(3) (ϑ1, ϑ2, ϑ3) =c(ϑ1)c(ϑ3)− c(ϑ2)s(ϑ1)s(ϑ3) −c(ϑ1)s(ϑ3)− c(ϑ2)s(ϑ1)c(ϑ3) s(ϑ1)s(ϑ2)
s(ϑ1)c(ϑ3) + c(ϑ2)c(ϑ1)s(ϑ3) −s(ϑ1)s(ϑ3) + c(ϑ2)c(ϑ1)c(ϑ3) −c(ϑ1)s(ϑ2)

s(ϑ3)s(ϑ2) c(ϑ3)s(ϑ2) c(ϑ2)

 (2.12)

2. Basics 10

A subgroup of SO(3) is SO(2) which can be interpreted as all the rotations around the z-axis. The
restriction of D(3) to SO(2) is achieved by fixing ϑ2 = 0 and ϑ1 = 0. D(3) then has the following
form:

D(3)(ϑ3) =

c(ϑ3) −s(ϑ3) 0
s(ϑ3) c(ϑ3) 0
0 0 1

 (2.13)

Obviously since the matrix now is of block-diagonal form it is no irreducible representation any
more. Over the complex numbers this representation can even by completely diagonalized like it was
shown in chapter 2.5.4:

D(3)(ϑ3) =

e−iϑ3 0 0
0 eiϑ3 0
0 0 1

 (2.14)

These three irreps of SO(2) can be labelled by m, the prefactor of the angle in the exponent. This in
turn means that D(3) contains the irreps with labels m = −1, 0, 1. By restriction to SO(2), D(3) is
now written as a sum of 1-dimensional irreps of SO(2), which reflects the fact that SO(2) is an
abelian group. This makes it possible to label the basis states of the vector space V that D(3) is acting
on by the irrep label m of SO(2). This labelling of basis states will be used later.

2. Basics 11

2.6. The Lie-Algebra
To explain the concept of a Lie-Algebra and the generators that this algebra is spanned by, it is very
instructive to first look at a specific example. For that again the matrix (2.4) representing a rotation
in the plane by an angle ϑ is chosen. The basic idea behind generators and their connection to a
specific group is to split up the total rotation by ϑ into many small rotations that are executed one
after another. If the number of small rotations approaches infinity, the small angle ∆ϑ gets
infinitesimally small.

2.6.1. Ex.: SO(2)
Following this approach a representation of an infinitesimal rotation in 2 dimension is needed. For
that cos(ϑ) and sin(ϑ) get written as a Taylor series and all factors of order ∆ϑ2 or higher are
omitted :

(
cos(∆ϑ) sin(∆ϑ)
− sin(∆ϑ) cos(∆ϑ)

)
=

(
1 ∆ϑ

−∆ϑ 1

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ i∆ϑ

(
0 −i
i 0

)
︸ ︷︷ ︸

J

(2.15)

So in summary a group element of SO(2) infinitesimally close to the identity is given by
R(∆ϑ) = I + i∆ϑJ , where J is known as the generator of SO(2). A factor of i is factored out in
the last step just by convention. Like described above a group element with a large angle ϑ is
obtained by executing the infinitesimal rotation infinitely often. Strictly speaking the following limit
is taken:

R(ϑ) = lim
N→∞

[R (∆ϑ)]N = lim
N→∞

[I + i∆ϑJ]N

By choosing the infinitesimal angle ∆ϑ to be ϑ
N

it is ensured that the total rotation angle is indeed ϑ.
Together with the identity ex = limN→∞(1 + x

N
)N [Zee16] the following important relation is

obtained:

R(ϑ) = eiϑJ (2.16)

2.6.2. Manifolds and tangent spaces
There are of course constrains to when the construction of a group by the exponential map as
presented above works. Firstly the group of course has to be continuous, otherwise it wouldn’t be
possible to Taylor-expand a group element. But for a group element to be expressed as in (2.16), the
group also has to fulfill the topological and analytical criterion of being a so called differentiable
manifold. A manifold is informally a topological space that locally looks like Rn. A strict

2. Basics 12

mathematical definition won’t be presented here, but can be found e.g. in [Lug21] or [Sch80]. The
group operation can then be seen as a function that takes two inputs from the manifold and maps
them onto another point on the same manifold, as required by group closure. In a Lie-group this
function has to be differentiable on the whole manifold. The mathematical details are subject to the
field of differential geometry, and won’t be part of this work. For further information see e.g.
[Lug21] or [RS22].
So in the previous paragraph it was established that a Lie-group can be seen as a point on a
multi-dimensional smooth generalized surface. The dimension of the Lie-group is the dimension of
the manifold, or phrased differently the number of parameters needed to specify any group element.
Furthermore in chapter 2.6.1 it was shown how the group can be expressed as a exponential map of a
specific set of matrices. But how do these two ideas can be connected? To understand this
relationship, let’s remember that we Taylor-expanded a group element infinitesimally close to the
identity. This expansion can be generalized to any Lie-group using the notion of a tangent space. To
construct this tangent space at any point x on the manifold, one has to look at curves γ on the
manifold, parameterized by t ∈ R, that pass through x at t = 0. The tangent vector a of this curve γ
at x then is part of the tangent space at the point x. a is obtained by taking the derivative of the curve
with respect to the parameter t and evaluating this derivative at t = 0. The details of how to take this
derivative are again spared here and can be found in [Lug21], [Sch80] or [RS22].
In the figure below two examples of smooth manifolds together with the tangent space at a point x
are shown.

Figure 2.2.: tangent space at point x to an unspecified manifold (left), and to S1 the manifold of SO(2) (right).
[TN08][Che15]

On the right hand side of the figure above the manifold of SO(2), the so called 1-sphere which is the
1-dimensional boundary of a 2-dimensional circle is shown. The fact that it is 1-dimensional reflects
the fact that one needs only one parameter, namely ϑ to specify a group element. The 1-d tangent
space at a point x is also shown and denoted by Tx(M).
For one- and two-dimensional manifolds it is often easy to visualize the manifold together with it’s
tangent space, for groups of higher dimension this becomes almost impossible.

2. Basics 13

With all this basic differential geometry handled, it is now possible to state the following:
The associated Lie-algebra g to any given Lie-group G is the tangent space at the identity. With
this Lie-algebra it is possible to reconstruct a Lie-group by the exponential map, similarly to the
example of SO(2) presented above (see [Jev11] or [Lug21] for a proof of this). Because of this, it is
instructive and often easier to investigate the group indirectly by looking at properties of the
associated algebra g. It turns out that g is real a vector space that is also closed under the
commutator3: [A,B] = AB −BA [Jev11]. This vector space has the same dimension as the
underlying manifold and the basis-elements of it are called generators often denoted by Ta. This
means every element A of the Lie-algebra can be written as a linear combination of these generators
with a factor of i pulled out again by convention to be explained later.

A(ϑ1, ϑ2, ...) = i

dim(g)∑
a=1

ϑaTa (2.17)

This allows any group element g(ϑ1, ϑ2, ...) to be written in terms of the generalized angles ϑa and
the generators Ta with the exponential map:

g(ϑ1, ϑ2, ...) = exp

i

dim(g)∑
a=1

ϑaTa

 (2.18)

This is clearly a generalization of the example of SO(2) shown in (2.16).

2.6.3. Commutation relation of the Lie-algebra
It was already mentioned above, that the Lie-algebra g is not only a vector space, but also has
another operation that it is closed under, namely the commutator for matrix Lie groups or the
Lie-bracket [A,B] for abstract Lie-groups. To understand the special role that this commutator
plays, the product of two group elements gA, gB is expressed through the exponential map of
elements A,B ∈ g. Here the so called Baker-Campbell-Hausdorff-formula [Zee16] is used:

exp(A) · exp(B) = exp

(
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] + . . .

)
(2.19)

Here ". . . " stands for an infinitely long sum of nested commutators. The closure of the algebra under
the commutator ensures, that the product of two group elements can also be expressed through the
exponential map of a Lie-algebra element. The commutator is therefore the natural composition
inside g, that contains information about how the composition on the associated group elements

3more general if one defines an abstract bilinear, antisymmetric operation, that fulfills the Jacobi-identity, the Lie-algebra
is closed under it. The commutator of two matrices fulfills these properties, so it is a specific example of this Lie-
bracket when dealing with matrix Lie-groups like it is mosten often the case in physics

2. Basics 14

looks like. Furthermore, since g is a vector space it is sufficient to evaluate the commutator on two
arbitrary basis elements Ta, Tb. The result [Ta, Tb] can always be written as a linear combination of
the generators Tc since these generators form a complete set of basis vectors:

[Ta, Tb] = i

dim(g)∑
c=1

fabcTc (2.20)

The coefficients fabc are called structure constants. They determine the structure of g under the
commutator which in turn fixes the group multiplication law as described above.[Zee16]

2.6.4. Generalization to SO(3) and SO(N)
In the case of SO(2) the exact form of the Lie-algebra was quite simple because there is only one
generator namely J . Looking back at the definition of SO(N) as the set of real orthogonal matrices
of size N that have a determinant of 1, the associated Lie-algebra so(N) can be constructed in the
following way. First a member of SO(N) infinitesimally close to the identity is written as
R ≃ I + A, where A is a member of so(N). Then by omitting factors of A2 or higher the condition
RTR = I becomes:

I ≃ (I + A)T (I+A) ≃ (I + (AT + A))

⇒ AT = −A
(2.21)

So any element A of so(N) has to be an antisymmetric matrix. Furthermore we can express A as a
linear combination of generators Ta as in (2.17).
The convention of pulling out a factor of i introduced earlier results in the requirement that for Ta to
span so(N) it has to be a complex hermitean N⊗N matrix. This conventional usage of complex
hermitean matrices instead of real antisymmetric ones as generators, comes from the fact that
hermitean matrices, because of their real expectation values play a crucial role in quantum
mechanics [Sch13]. So in order to find the generators of SO(N) it is necessary to find a basis for
complex hermitean N⊗N matrices. For N = 3 this basis consists of the following three matrices:

Jx =

0 0 0
0 0 −i
0 i 0

 Jy =

 0 0 i
0 0 0
−i 0 0

 Jz =

0 −i 0
i 0 0
0 0 0

 (2.22)

A general antisymmetric 3x3 matrix A, which as stated before is part of the Lie-algebra so(N), can
therefore be written as A = i (ϑxJx + ϑyJy + ϑzJz), which allows a generic group element of

2. Basics 15

SO(3) to be constructed in the following way::

R(ϑn) = exp

(
i
∑
n

ϑnJn

)
withn = x, y, z (2.23)

For higher dimensions the construction of the generators can be easily generalised. Each element
above the diagonal can be chosen to be i or −i, which fixes the rest of the matrix by the hermiticity
requirement. So the number of generators, also known as the dimension of the associated algebra
so(N), is given by the elements of a N⊗N matrix above the diagonal:

dim(so(N)) =
N2 −N

2
=

N(N − 1)

2
(2.24)

An element of SO(N), depending on N(N−1)
2

generalized angles, can then be written in the same way
as in (2.23) with n ranging from 0 to N(N−1)

2
.

2.6.5. Lie-Algebra representations
In general the Lie-Algebra is an abstract vector space with the previously mentioned composition
[A,B], the so called Lie-bracket. Physicist however often do not clearly distinguish between the
abstract elements of the algebra and their representations which are a set of d⊗ d matrices. This is
the reason why in the previous chapter the Lie-algebra was introduced as a set of matrices, with the
Lie-bracket realised by the matrix commutator. An additional reason for this is the fact that many
groups like GL(N), SO(N) or SU(N) are defined as a set of matrices with some extra condition.
Analogous to group representations, a Lie-Algebra representations Dg is a homomorphic map into
GL(Rn/Cn), here this map has to preserve the Lie-bracket:

[Dg(gi), Dg(gj)] = Dg([gi, gj]) (2.25)

Via the exponential map, this representation of the Lie-algebra directly delivers a representation of
the associated Lie-group. From this, most of the concepts from the theory of group representations,
presented in chapter 2.5 can be transferred to Lie-Algebra representations. For example the concepts
of faithfulness and equivalence or irreducibility of a representation of a Lie-Algebra can be adopted.
A Lie-Algebra representation can also be restricted to a subalgebra similarly as it was described in
chapter 2.5.5 for group representations.

2. Basics 16

2.7. Tensor product of representations and coupling
coefficients

In the following chapter the concept of tensor products of representations shall be established. Two
reasons for the importance of this product representations are presented in An Introduction to
Tensors and Group Theory for Physicists by Jevanjee [Jev11]:

The tensor product of representations is important for several reasons: First, almost all
representations of interest can be viewed as tensor product of other, more basic
representations. Second, tensor products are ubiquitous in quantum mechanics (since
they represent the addition of degrees of freedom), so we better know how they interact
with representations.

An example for the second mentioned reason is the addition of angular momentum in quantum
mechanics, the mathematics of which can be described exactly by tensor products of representations
of the symmetry group SO(3).
These reasons should give enough motivation to investigate product representations further.

2.7.1. Definition and Properties
The basic idea behind the tensor product is to create a new vector space V ⊗W from to given vector
spaces V , W . This new vector space contains product vectors v ⊗ w ∈ V ⊗W with v ∈ V and
w ∈ W . For the operation ⊗ to be called a product, it should be bilinear and associative [Jev11]:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

c · (v ⊗ w) = (c · v)⊗ w = v ⊗ (c · w), c ∈ R/C
(v1 ⊗ v2)⊗ v3 = v1 ⊗ (v2 ⊗ v3)

(2.26)

Basis
A basis for V ⊗W can be obtained by taking the tensor product of the basis vectors of the underlying
vector spaces. To be precise let V be a d1-dimensional vector space with basis {ei} and W be
d2-dimensional with basis {fj}, then {ei ⊗ fj} forms a basis of V ⊗W with dimension d = d1 · d2.

Operators
Using two linear operators A1 and A2 acting on vector spaces V and W respectively it is possible to
create a new linear operator A1 ⊗ A2 acting on the product space:

(A1 ⊗B1)(v ⊗ w) ≡ (A1v)⊗ (B1w) (2.27)

2. Basics 17

with multiplication law:

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2) (2.28)

A proof that the operator defined in this way is unique and well defined and the multiplication law
holds as claimed, can be found in An Elementary Introduction to Groups and Representations by
Hall [Hal00].
It is important to mention that not every linear operator on the product space V ⊗W can be written
as a product of linear operators acting on V and W .
In the next chapter the tensor product of operators will be used to create a new group representations
from two known representations.

2.7.2. Tensor product representations
Recalling that group elements g of a given Lie-group G can be represented by linear operators D(g)
acting on a vector space V , one might suggest that it is possible to create new representations of the
same group by the previously described tensor product. In fact it is easy to check that given two
representations D(d1) and D(d2) of dimensions d1 and d2, one obtains a new (d1 · d2)-dimensional
representation D(d1·d2) = D(d1) ⊗D(d2) of G via the tensor product. The representation condition
(2.5) can be checked using the tensor multiplication law (2.28) as well as the fact that D(d1) and
D(d2) are representations:

D(d1·d2)(g1) ·D(d1·d2)(g2) =
(
D(d1)(g1)⊗D(d2)(g1)

)
·
(
D(d1)(g2)⊗D(d2)(g2)

)
=
(
(D(d1)(g1) ·D(d1)(g2)

)
⊗
(
(D(d2)(g1) ·D(d2)(g2)

)
=
(
(D(d1)(g1 ◦ g2)

)
⊗
(
(D(d2)(g1 ◦ g2)

)
= D(d1·d2)(g1 ◦ g2)

(2.29)

The creation of new representations by two smaller ones was already described in section 2.5.4
where the direct sum was discussed. There it was also described that the direct sum of two
irreducible representation is reducible by construction. For the direct product the situation isn’t so
simply anymore. In general the tensor product representation of two irreps is no irrep anymore,
which means it can be written as a direct sum of smaller representations; the remaining work
consists of determine these summands, together with the so called multiplicity mdi , the number
describing how often each irrep is contained, and the change of basis matrix S performing the block
diagonalization of D(d·d′)(g).

D(d)(g)⊗D(d′)(g) = S−1 ·

D(d1)(g) 0 . . . 0

0 D(d2)(g) . . . 0
...

... . . . 0
0 0 0 D(dm)(g)

 · S (2.30)

2. Basics 18

The di in the block-diagonal matrix label the irreducible representation and specify the dimension of
the irrep. Since the total dimension of the tensor product representation is also given by the product
of the two dimension d, d′ the following identity can be stated:

d · d′ =
∑
i

mdidi (2.31)

Like mentioned before a single irrep can appear more than once in which case the multiplicity of that
particular irrep is greater than 1.

Lie-algebra product representations

The corresponding algebra representation of a Lie-algebra element A ∈ g to the product
representation D(d) ⊗D(d′) of the associated Lie-group G is given by the following expression:(

D(d)
g ⊗D(d′)

g

)
(A) = D(d)

g (A)⊗ 1d′ + 1d ⊗D(d)
g (A) (2.32)

A proof for this can be found in [Jev11].

2.7.3. Coupling-coefficients
The above mentioned block-diagonalization of the tensor product representation of a given
Lie-group G is called Clebsch-Gordon expansion. In this expansion the productspace V(d) ⊗ V(d′)

gets decomposed into irreducible subspaces V(di) on which the irreps D(di) act on. An analogous
formulation of this decomposition described in equation (2.30) is the following [Böh11]:

D(d)(g)⊗D(d′)(g) ∼=
⊕
di

(d d′|di)D(di)(g) (2.33)

In this equation the sum runs over each irrep label di; the multiplicity mdi of each irrep di in the
product expansion is written as (d d′|di).
There are now two equivalent forms of the product representation D(d) ⊗D(d′), one in the natural
product basis

{
edi ⊗ ed

′
j |i = 1, . . . , d; j = 1, . . . , d′

}
, the other one in the reduced basis{

u
(di,ρ)
k |k = 1, . . . , di; ρ = 1, . . . ,mdi ; di = d1, . . . , dm

}
where the product representation is

block-diagonal. This basis is labelled by the irrep label di, with the irrep D(di) acting on the invariant
subspace V(di), the multiplicity label s of this irrep and the label j of the basis of V(di).
The matrix S described in equation (2.30) transforms between these two bases

u
(di,ρ)
k = S ·

(
ed ⊗ ed

′
)
=
∑
i

∑
j

(
d d′ di ρ
i j k

)
edi ⊗ ed

′

j (2.34)

2. Basics 19

with the elements of S being called coupling-coefficients:

C d, d′, di
i j,k ρ =

(
d d′ di ρ
i j k

)
(2.35)

If both bases are orthonormal, the change of basis matrix S is unitary, S† = S−1, which allows the
following formulation of the inverse transformation of (2.34). In it the basis elements in the product
space are expressed in terms of the basis elements of irreducible representations[Böh11]:

edi ⊗ ed
′

j =
∑
di

∑
ρ

∑
k

(
d d′ di ρ
i j k

)∗

u
(di,ρ)
k (2.36)

One final thing to mention is that the coupling-coefficients can only be determined up to a
phasefactor exp(it) with t ∈ R.

3. Computation of coupling coefficients 20

3. Computation of coupling coefficients

The following chapter follows closely the paper “Racah’s method for general subalgebra chains:
Coupling coefficients of SO(5) in canonical and physical bases” by Caprio, Sviratcheva, and McCoy
[CSM10]. In it, a method for the computation of the previously introduced coupling coefficients is
described. Furthermore an implementation of this method in python shall be presented.

3.1. Method
The method aims at computing the coupling coefficients that arise when creating a tensor product
representations D(d) ⊗D(d) of two irreps D(d) and D(d′) of a Lie-group G. These coupling
coefficients describe the transformation between the product basis and the reduced basis as shown in
chapter 2.7.3. In [CSM10] the following alternative version of (2.34) is used:∣∣∣∣∣ Γ1 Γ2

ρΓ
aΛ
λ

〉
=

∑
a1Λ1 a2Λ2
λ1 λ2

(
Γ1 Γ2 ρΓ
a1Λ1 a2Λ2 aΛ
λ1 λ2 λ

)∣∣∣∣∣ Γ1 Γ2
a1Λ1 a2Λ2

λ1 λ2

〉
(3.1)

In contrast to eq. (2.34) the basis elements of each invariant subspace are written labelled through
irrep labels Λ of a subalgebra H together with labels λ that label basis states in each invariant
subspace that DΛ acts on. This labelling was explained in chapter 2.5.5 with the example of
G = SO(3) and H = SO(2). There the basis states of R3 that the irrep D(Γ=3) of SO(3) acts on,
where labelled by the irrep label Λ = m of SO(2). Because SO(2) is an abelian group, it’s irreps are
all one-dimensional and no additional label λ is needed there to distinguish the basis states in each
invariant subspace. This changes when the considered subalgebra H is non-abelian.
Besides the irrep labels Γ and Λ in eq. (3.1) two multiplicity labels ρ and a are introduced. The outer
multiplicity ρ for G⊗G → G was already seen in (2.34) and comes into play when in the
Clebsch-Gordon decomposition some irreps appear multiple times. The inner multiplicity a resolves
the branching for G → H . This is needed when by restriction of an irrep Γ of G to H , an irrep Λ of
H emerges more than once. Outer multiplicity of H for H ⊗H → H shall be assumed to be non
present.

The search for the coupling coefficients

(
Γ1 Γ2 ρΓ
a1Λ1 a2Λ2 aΛ
λ1 λ2 λ

)
can be strongly simplified by Racah’s

3. Computation of coupling coefficients 21

factorization Lemma [Rac49]:(
Γ1 Γ2 ρΓ
a1Λ1 a2Λ2 aΛ
λ1 λ2 λ

)
=

(
Λ1 Λ2 Λ

λ1 λ2 λ

)
·

(
Γ1 Γ2 ρΓ

a1Λ1 a2Λ2 aΛ

)
(3.2)

With this the coupling coefficients of interest can be expressed as a product of a coupling coefficient
of H and a reduced coupling coefficient that doesn’t depend on the λ-labels anymore. For the
following method to work, the coupling coefficients for the subalgebra H that embody all the
λ-dependence have to be known beforehand.
In the paper [CSM10] the authors start with a bra-ket version of eq.(2.32) for a generator TΛT

λT
of G:

〈
Γ1 Γ2
a1Λ1 a2Λ2

λ1 λ2

∣∣∣∣∣TΛT
λT

∣∣∣∣∣
Γ1 Γ2
ρΓ
aΛ
λ

〉
=

〈
Γ1 Γ2
a1Λ1 a2Λ2
λ1 λ2

∣∣∣∣∣TΛT (1)
λT

∣∣∣∣∣
Γ1 Γ2
ρΓ
aΛ
λ

〉

+

〈
Γ1 Γ2
a1Λ1 a2Λ2

λ1 λ2

∣∣∣∣∣TΛT (2)
λT

∣∣∣∣∣
Γ1 Γ2
ρΓ
aΛ
λ

〉 (3.3)

The factorization lemma together with the Wigner-Eckart Theorem1 is then used to reformulate
eq.(3.3) and receive the following equation where only reduced coupling coefficients, reduced matrix
elements and recoupling coefficients of H appear:

∑
a

〈
Γ
aΛ

∥∥∥∥TΛT

∥∥∥∥ Γ
a′Λ′

〉(
Γ1 Γ2 ρΓ
a1Λ1 a2Λ2 aΛ

)
=∑

a′1Λ
′
1

Φ (Λ1Λ2; Λ)Φ (Λ′
1Λ2; Λ

′)

[
Λ2 Λ′

1 Λ′

ΛT Λ Λ1

]〈
Γ1
a1Λ1

∥∥∥∥TΛT

∥∥∥∥ Γ1

a′1Λ
′
1

〉(
Γ1 Γ2 ρΓ
a′1Λ

′
1 a2Λ2 a′Λ′

)

+
∑
a′2Λ

′
2

[
Λ1 Λ′

2 Λ′

ΛT Λ Λ2

]〈
Γ2
a2Λ2

∥∥∥∥TΛT

∥∥∥∥ Γ2

a′2Λ
′
2

〉(
Γ1 Γ2 ρΓ
a1Λ1 a′2Λ

′
2 a′Λ′

) (3.4)

1This theorem states that general matrix elements of irreducible tensor operators can be expressed as products of coupling
coefficients and reduced matrix elements. See [CSM10], [Böh11] or [Zee16] for further information

3. Computation of coupling coefficients 22

For each choice of a1Λ1, a2Λ2,Λ and a′Λ′ one obtains a different relation between reduced coupling
coefficients using (3.4). If there are N possible choices for these four labels, a linear, homogeneous
system of equations in N unknowns can be formulated in the following way[CSM10]:

(3.5)

With this, the computation of the coupling coefficients for Γ1 ⊗ Γ2 → ρΓ comes down to creating
the matrix A using (3.4) and determining the null space of it. This null space is one-dimensional in
the case where Γ1 ⊗ Γ2 → Γ is multiplicity free. The proper normalization of a vector C⃗a in the
nullspace can be achieved by dividing C⃗a by the length N =

√
C⃗a · C⃗a with the special inner

product:

C⃗a · C⃗b ≡
∑

i
(same aΛ)

Ca
i · Cb

i (3.6)

Additionally to the normalization an overall phase for every C⃗a can be freely chosen.
If there is an outer multiplicity present, the null-space might be higher dimensional. In this case one
has to perform a Gram-Schmidt procedure, with the inner product defined in (3.6), to obtain a
orthonormal basis for the null-space.
This basis is only determined only to within a unitary transformation. This will be important later
when comparing the coupling coefficients from an example in [CSM10] to the coefficients
calculated by the implementation in python presented in section 3.2.

3. Computation of coupling coefficients 23

3.1.1. Ex.: SO(5) coupling coefficients
A special attention in the paper [CSM10] is paid to the algebra of the special orthogonal group so(5)
with it’s subalgebra so(4) ∼ so(3)⊗ so(3). The computation of the coupling coefficients for so(5) is
demonstrated and a few examples for the coupling of specific irreps are shown. The python
implementation in section 3.2 allows the calculation of so(5) coupling coefficients.

Generators
The Lie algebra so(5) is spanned by 2 independent so(3) algebras in addition with 4 generators that
connect these subalgebras. This results in the following expression of so(5) as the linear span L of a
total of 10 generators:

so(5) = L (X1, X2, X3, Y1, Y2, Y3, T++, T+−, T−+, T−−) (3.7)

The generators Xi, Yi fulfill the usual so(3) commuation relations, the remaining commutation
relations can be found in [CSM10].

Irrep labels
A so(5)-irrep is labelled by a tuble Γ = (RS) of two numbers with values S = 0, 1

2
, . . . and

R = S, S + 1
2
, Similarly an irrep of so(4) is also labelled by a 2-tuple Λ = (XY) with

X = 0, 1
2
, . . . and Y = 0, 1

2
, . . . being so(3) irrep labels. Since this subalgebra is not abelian the

additional labels λ = (MX MY) with MX = −X, . . . , X − 1, X and MY = −Y, . . . , Y − 1, Y are
needed to label the basis states. The Clebsch-Gordon Expansion for the inner tensor product of two
so(4)-irreps: (X1 Y1)⊗ (X2 Y2) → (X Y) produces no outer multiplicities. (X Y) is contained if
X ∈ {|X1 −X2|, |X1 −X2|+ 1, . . . , X1 +X2} and Y ∈ {|Y1 − Y2|, |Y1 − Y2|+ 1, . . . , Y1 + Y2}.
This lack of outer multiplicity was an assumption that was made at the beginning of section 3.1.

Recoupling coefficients
Because of the isomorphism so(4) ∼ so(3)⊗ so(3), the recoupling coefficients for so(4) can be
written as a product of so(3) Wigner 6j Symbols:[
(X1 Y1) (X2 Y2) (X12 Y12)
(X3 Y3) (X Y) (X23 Y23)

]
= (−1)X1+X2+X3+X(−1)Y 1+Y 2+Y 3+Y

√
2X12 + 1

·
√

2X23 + 1
√

2Y12 + 1
√

2Y23 + 1

{
X1 X2 X12
X3 X X23

}{
X1 X2 X12
X3 X X23

} (3.8)

This Wigner 6j Symbol plays a role in the coupling of 3 angular momenta and can be written as a
product of three 3j symbols which in turn are related to the ordinary so(3) Clebsch-Gordon
coefficients. For further information on this see Quantum Theory of Angular Momentum by
Varshalovich, Moskalev, and Khersonskii [VMK88].

3. Computation of coupling coefficients 24

Phase factor
The phase factor Φ incurred when interchanging columns in the so(4) coupling coefficient is given
the following expression:

Φ((X1 Y1), (X2 Y2), (X Y)) = (−1)X1+X2−X(−1)Y1+Y2−Y (3.9)

(RS) → (XY) branching
When restricting a so(5)-irrep (RS) to the subalgebra so(4), the so(4)-irrep (X Y) is contained if
the following branching conditions are fulfilled:

X = R− n

2
− m

2

Y = S +
n

2
− m

2
with 0 ≤ n ≤ 2(R− S) and 0 ≤ m ≤ 2S

(3.10)

This branching is of importance because the two sum in eq.(3.4) run over all so(4)-irreps that are
contained in the corresponding so(5)-irrep.

3. Computation of coupling coefficients 25

Reduced matrix elements
The last thing that is needed to handle eq.(3.4) for the special case of so(5) are the reduced matrix
elements for the subalgebra so(4). These matrix elements of the generators that are in so(5) but not
in so(4) are given by the following expressions [CSM10]:

〈
(RS)

(X + 1
2
Y + 1

2
)

∥∥∥∥T (1
2

1
2)
∥∥∥∥ (RS)
(X Y)

〉
=

[
(R + S −X − Y)(R + S +X + Y + 3)

· (S −R +X + Y + 1)(R− S +X + Y + 2)

]1/2

2
√
2X + 2

√
2Y + 2

〈
(RS)

(X + 1
2
Y − 1

2
)

∥∥∥∥T (1
2

1
2)
∥∥∥∥ (RS)
(X Y)

〉
=

[
(R + S −X + Y + 1)(R + S +X − Y + 2)

· (R− S −X + Y)(R− S +X − Y + 1)

]1/2

2
√
2X + 2

√
2Y

〈
(RS)

(X − 1
2
Y + 1

2
)

∥∥∥∥T (1
2

1
2)
∥∥∥∥ (RS)
(X Y)

〉
=

[
(R + S −X + Y + 2)(R + S +X − Y + 1)

· (R− S −X + Y + 1)(R− S +X − Y)

]1/2

2
√
2X

√
2Y + 2

〈
(RS)

(X − 1
2
Y − 1

2
)

∥∥∥∥T (1
2

1
2)
∥∥∥∥ (RS)
(X Y)

〉
=

−
[
(R + S −X − Y + 1)(R + S +X + Y + 2)

· (S −R +X + Y)(R− S +X + Y + 1)

]1/2

2
√
2X

√
2Y

(3.11)

3. Computation of coupling coefficients 26

3.2. Implementation in python
The paper [CSM10] applies the method presented above to calculate the coupling coefficients for the
algebra G = so(5) with H = so(4) as the subalgebra. One of the exercises for this bachelor thesis
was to modify the preexisting code by Rasmus Nielsen and include the Gram-Schmidt procedure.
For this it was also necessary to programm the special inner product described in eq. (3.6).
I also programmed all the coupling coefficient computation from scratch, with heavy inspiration
from the preexisting code by Rasmus. This helped me a lot in understanding the code and the
method in general, while also improving my programming skills.
The complete code is attached in A.1. This is the version by Rasmus, with my involvement starting
with the function scalar_product.

The basic structure of the code:

1. Create a python version of the coupling relation (3.4): Coupling_Conditions

a) Recoupling coefficients: ReCouplingCoefficients

b) phase factors: PhaseFactor

c) reduced matrix elements: MatrixElements

2. Collect all Coupling relations in the matrix A from (3.5): Linear_System_Matrix

3. Calculate the normalized coupling coefficients: CouplingCoefficients

a) calculate a basis for the nullspace of A

b) apply the Gram-Schmidt-procedure to this basis: gram_schmidt

i. special inner product (3.6): scalar_product

The details of each function mentioned above shall not be explained here. These can be looked at in
the code that is attached in section A.1.

3. Computation of coupling coefficients 27

3.2.1. Ex.1: 1d-nullspace
(
1
2

1
2

)
⊗
(
1
2
0
)
→
(
1
2
0
)

In the paper [CSM10] two specific examples of so(5) coupling are presented. With these it is
possibel to check whether the code works as expected.
In the first example the following irrep-labels are chosen:
Γ1 = (R1 S1) =

(
1
2

1
2

)
, Γ2 = (R2 S2) =

(
1
2
0
)
, Γ = (RS) =

(
1
2
0
)

Using eq. (3.10) the following branching Γ → Λ occurs when restricting so(5) to so(4):(
1

2

1

2

)
︸ ︷︷ ︸
so(5)−label

→
(
1

2

1

2

)
⊕
(
0 0

)
︸ ︷︷ ︸

so(4)−labels

(3.12)

(
1

2
0

)
︸ ︷︷ ︸

so(5)−label

→
(
1

2
0

)
⊕
(
0
1

2

)
︸ ︷︷ ︸

so(4)−labels

(3.13)

Together with the coupling condition of so(4), mentioned in section 3.1.1 this results in four
coupling coeffcients that need to be determined:

c1 ≡

 (
1
2

1
2

) (
1
2
0
) (

1
2
0
)

(0 0)
(
0 1

2

) (
0 1

2

)
 (3.14)

c2 ≡

 (
1
2

1
2

) (
1
2
0
) (

1
2
0
)(

1
2

1
2

) (
1
2
0
) (

0 1
2

)
 (3.15)

c3 ≡

 (
1
2

1
2

) (
1
2
0
) (

1
2
0
)

(0 0)
(
1
2
0
) (

1
2
0
)
 (3.16)

c4 ≡

 (
1
2

1
2

) (
1
2
0
) (

1
2
0
)(

1
2

1
2

) (
0 1

2

) (
1
2
0
)
 (3.17)

The lower row in each coupling coefficient shows the involved so(4)-irreps. This triplet of
so(4)-labels also labels the columns of the matrix A from eq. (3.5) as shown in the following figure:

3. Computation of coupling coefficients 28

Figure 3.1.: coefficient matrix A used to determine the so(5) ⊃ so(4) coupling coefficient for(
1
2

1
2

)
⊗
(
1
2 0
)
→
(
1
2 0
)
. [CSM10]

The rows of A correspond to a single coupling relation. They are labelled by four so4-labels
(X1 Y1), (X2 Y2), (X Y), (X ′ Y ′) where the first three labels have to fulfill the same
branching/coupling conditions discussed above. The additional label (X ′ Y ′) has to be connected to
(X Y) by a generator T (

1
2

1
2) of so(5) that is not contained in so(4): (X ′ Y ′)⊗

(
1
2

1
2

)
→ (X Y).

Only if this condition is fulfilled the matrix elements from 3.1.1 are non-vanishing and a nonnull
coupling condition is obtained.
This matrix A is created with the corresponding python function Linear_System_Matrix. The
order of the column-labels is fixed by Indexing and differs from the order used in the paper and
shown in fig.3.1. Furthermore the code includes some coupling relations with so(4) irreps
Λ′ = (X ′ Y ′) that are not contained in the so(5)-irrep Γ =

(
1
2
0
)
. This violation of branching

conditions Γ ↛ Λ′ is needed in some cases to get enough coupling relations to make sure that the
system of equations is solvable.
The only thing left to do is to calculate the nullspace of A using scipy.linalg.null_space. Since
in this case there is no outer multiplicity ρ present the nullspace is one-dimensional. The last step
then is to scale the vector spanning the nullspace, so that it is normalized with respect to the inner
product (3.6). The resulting normalized nullvector calculated by the python code is the following

 c1
c2
c3
c4

 ≈

 −0.447214
−0.894427
0.447214
0.894427

 (3.18)

which matches with the nullvector
[
−
√

1
5

−
√

4
5

√
1
5

√
4
5

]
from the paper [CSM10].

3. Computation of coupling coefficients 29

3.2.2. Ex.2: 2d-nullspace (1 0) ⊗
(
1 1

2

)
→
(
1 1

2

)
In the first example with no outer multiplicity, the coupling coefficients from the python code
matched with those from the paper [CSM10] right away. If however there is an outer multiplicity,
that is, the irrep Γ in focus appears multiple times in the direct product representation Γ1 ⊗ Γ2, the
situation is not so simple anymore.
In the following section an example with an outer multiplicity of two is shown and the coupling
coefficients calculated by the python code are compared to those presented in [CSM10]. For that the
following irrep labels are chosen:
Γ1 = (R1 S1) = (1 0) , Γ2 = (R2 S2) =

(
1 1

2

)
, Γ = (RS) =

(
1 1

2

)
The Indexing function in the code can be used to see how many coupling coefficients are involved.
In this specific example there are 18 of those with each of them labelled by a different combination
of so(4) labels that fulfill the branching and coupling conditions explained in the previous chapters.
The output of the Indexing function is shwon in the following figure:

Figure 3.2.: list of triplets of so(4) labels that meet the coupling and branching criteria. They label the coupling
coefficients that are calculated by the python code.

The matrix A whose nullspace will determine the coupling coefficients then has 18 columns and 44
rows, with each row representing a specific coupling relation. In the next figure a cutout with 11
columns and 18 rows of this matrix calculated via python is shown:

3. Computation of coupling coefficients 30

Figure 3.3.: Cutout of the linear system matrix for the second example with an outer multiplicty of 2.

This matrix has a 2-dimensional nullspace, a basis for this is calculated with
scipy.linalg.null_space. Afterwards the Gram-Schmidt procedure (gram_schmidt) is applied
to this basis with the use of the special inner product (scalar_product). The vectors of the resulting
ONB consist of the coupling coefficients of interest. This procedure is embedded in the function
CouplingCoefficients which references gram_schmidt. The two normalized coupling-coefficient
vectors as calculated by the python code is shown at the top of the following figure, on the bottom
the coupling coefficients from [CSM10] are listed:

c⃗0 =

c⃗1 =

p⃗0 =

p⃗1 =

Figure 3.4.: comparison between the two orthonormal coupling coefficient vectors from the python code (top)
and from the paper [CSM10] (bottom)

The labelling of each coefficient returned by the code is given in fig. 3.2, in [CSM10] a different
order of the so(4) irrep label triplets is used. That’s why it is hard to compare the coefficients
directly. Nevertheless one can see right away that they don’t match as one vector from the paper
involves four zeros which don’t show up in the coefficients produced by the python code. This was

3. Computation of coupling coefficients 31

already mentioned at the end of section 3.1 when it was stated that the ONB is only determined up to
a unitary transformation. This is intuitively clear for a 2-d real vector space where there are an
infinite number of possible orthonormal bases connected with each other by a rotation of the plane
which is mathematically described by an orthogonal matrix, the real-valued pendant to a unitary
matrix. To test if both vectors in fig.3.4 are actually equivalent one has to determine the matrix that
transforms between the two bases and check whether it’s orthogonal. The transformation between
the two bases looks as follows: [

p⃗0
p⃗1

]
=
[
m00 m01
m10 m11

][
c⃗0
c⃗1

]
(3.19)

With this equation the elements of the transformation matrix can be determined using the fact that
the basis from the code {c⃗i} is an ONB with respect to the special inner product:

p⃗0 · c⃗0 = (m00c⃗0 +m01c⃗1) · c⃗0 = m00

p⃗0 · c⃗1 = (m00c⃗0 +m01c⃗1) · c⃗1 = m01

p⃗1 · c⃗0 = (m10c⃗0 +m11c⃗1) · c⃗0 = m10

p⃗1 · c⃗1 = (m10c⃗0 +m11c⃗1) · c⃗1 = m11

(3.20)

Using the formulas above, the transformation matrix can be calculated if both bases are known. As a
double check the paper basis should be obtained by applying this transformation to the code basis:

[
p⃗0

p⃗1

]
= ·

[
c⃗0

c⃗1

]
=

Figure 3.5.: coupling coefficients from the paper [CSM10] calculated by applying an orthogonal transforma-
tion to the coupling coefficient vectors obtained through the python code

It’s easy to see that the transformation matrix is in fact orthogonal, so both bases are orthonormal
and span the same 2-d space. This makes the coupling coefficients contained in the two bases
equivalent. It should be meintioned that the two vectors from fig. 3.5 don’t exactly match the ones
shown in fig. 3.4 due to numerical errors and different labelling schemes.

4. Fusion coefficients for fuzzy harmonics 32

4. Fusion coefficients for fuzzy
harmonics

The so called fuzzy approach poses an alternative to lattice field theory for dealing with quantum
fields in the strong coupling regime. This is necessary because for the strong nuclear interaction
pertubative methods fail to give reliable results, inter alia, because of arising ultraviolet divergences.
In the fuzzy approach the underlying manifold, describing the spacetime the quantum field lives on,
gets replaced by a fuzzy manifold, where at sufficiently small lengths κ the coordinates of a point
become non-commuting operators. Those operators are generators of a underlying non-commutative
algebra of functions. Like shown many times before these generators can be represented by matrices
which then play the role of scalar fields in an approximation to field theory. [MO03]
With this replacement the position of a particle at scales smaller than κ has no longer a well defined
meaning since the three space coordinates can no longer be simultaneously diagonalized. The fuzzy
manifold and the associated non-commuative algebra have to approach the classical manifold and
it’s algebra of functions at scales larger than κ to recover the idea of a precise location of the
particle. [Mad92] In contrast to regularization by lattice field theory, the fuzzy approach can preserve
symmetries and topological features.[Ydr01].
In the following section the two manifolds S2,the 2-sphere, and S4,the 4-sphere, with their
corresponding so(3) and so(5) algebras shall be fuzzyfied. The basis functions on the fuzzy versions
of the classical manifolds are called fuzzy harmonics. For larger scales these fuzzy harmonics should
approach the classical spherical harmonics which form a basis for all function on S2 and S4

respectively.

4.1. Fuzzy harmonics on S2

The defining properties of the so3 fuzzy harmonics Ŷ m
l are given in the following with the use of the

three generators Jx, Jy and Jz:

[Jz, Ŷ
m
l] = mŶ m

l ,
∑

i=x,y,z

[Ji, [Ji, Ŷ
m
l]] = l(l + 1)Ŷ m

l (4.1)

The fuzzy harmonics are labelled by the irrep label l of so(3) and the state-label m with −l ≤ m ≤ l.
This results in 2l + 1 fuzzy harmonics for each irrep l of so(3)

4. Fusion coefficients for fuzzy harmonics 33

Furthermore the Ŷ m
l are orthonormal in the following sense:

tr
[
Ŷ m
l (Ŷ m′

l′)†
]
= δl,l′ δm,m′ (4.2)

They also fulfill the following conjugation property:

(Ŷ m
l)† = (−1)m Ŷ −m

l (4.3)

Ŷ m
l can also be represented by a matrix with dimension k alternatively expressed by the label

s = k−1
2

.
Counting all fuzzy harmonics with irrep labels 0 ≤ l ≤ k − 1 gives the following result:

k−1∑
l=0

(2l + 1) = k2 (4.4)

Since all these Ŷ m
l are orthonormal to each other, they form a basis on the space of complex k × k

matrices. This allows the product of any two fuzzy harmonics to be written as a linear combination
of fuzzy harmonics:

Ŷ m1
l1

Ŷ m2
l2

=
k−1∑
l3=0

l3∑
m3=−l3

F l3,m3

l1,m1;l2,m2
Ŷ m3
l3

(4.5)

The expansion coefficients F l3,m3

l1,m1;l2,m2
are called fusion coefficients and can be obtained by using

orthonormality of Ŷ m
l and evaluating the trace explicitly. The details of this can be found in

[CITE!!!], a similar derivation for the so(5) case is also presented later in greater detail. The result
for the so(3) fuzzy harmonics fusion coefficients is given in the following with the use of the Wigner
3j symbols 1[Mat23]

F l3,m3

l1,m1;l2,m2
= (−1)

∑3
i=1 li+m3

3∏
i=1

√
2li + 1

×
s∑

m′
i=−s

(−1)3s+
∑3

i=1 m
′
i

(
s l1 s
m′

2 m1 −m′
1

)(
s l2 s
m′

3 m2 −m′
2

)(
s l3 s
m′

1 −m3 −m′
3

) (4.6)

The implementation of this formula in python can be found in section A.2.1.

1The 3j symbols constitute an alternative way of writing coupling coefficients with the following relation between 3j

symbols and the Clebsch-Gordon coefficients:
(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3+1

⟨j1,m1; j2,m2|j3, (−m3)⟩

4. Fusion coefficients for fuzzy harmonics 34

4.1.1. Ex.: 2d-representation of Ŷ m
l

In the following subsection the fusion coefficients calculated using eq. (4.6) are tested with a
2-dimensional representation of the fuzzy harmonics Ŷ m

l . For that, firstly the 2-dimensional
representation of the generators of so(3) are presented:

Jx =̂

(
0 1

2
1
2

0

)
, Jy =̂

(
0 − i

2
i
2

0

)
, Jz =̂

(
1
2

0

0 −1
2

)
(4.7)

These 2-d representations are of course essentially the famous Pauli-matrices, scaled such that the
commutator relations of so(3) are fulfilled.
Next the 2d-representation of the relevant fuzzy harmonics are shown:

Y 0
0 =̂

(
1√
2

0

0 1√
2

)

Y 0
1 =̂

(
1√
2

0

0 − 1√
2

)
, Y −1

1 =̂

(
0 0

i 0

)
, Y 1

1 =̂

(
0 i

0 0

) (4.8)

These representations fulfill the eigenvalue equations (4.1), are orthonormalized (4.2) and have the
conjugation property (4.3). This allows the testing of the fusion coefficient code, firstly for the
following product:

Y 1
1 · Y −1

1 =̂

(
−1 0

0 0

)
=̂

−1√
2
Y 0
0 +

−1√
2
Y 0
1 (4.9)

This specific product is also written as a linear combination of the matrices from eq.(4.8) which fixes
the following two fusion coefficients:

F 0,0
1,1;1,−1 =

−1√
2

F 1,0
1,1;1,−1 =

−1√
2

(4.10)

The implementation in python indeed reproduces these two coefficients.
The presented example is also treated in the python code attached in the appendix A.2.1.
Additionally in this code all possible products are compared to the fusion expansion. This verifies
the fusion coefficient formula (4.6) as well as the implementation of it for the 2-dimensional case
with s = 1

2
. This provides a good indication that everything also works out for different values of s.

4. Fusion coefficients for fuzzy harmonics 35

4.2. Fuzzy harmonics on S4

Similarly to the so(3) case, the so(5) fuzzy harmonics fulfill certain eigenvalue equations which
involve the 10 generators {Ta} presented in 3.1.1. The corresponding eigenvalues label the so(5)
fuzzy harmonics just like in the so(3) case:

10∑
a=1

[Ta, [Ta, Ŷ
RS
X,Y,mX ,mY

]] = 2 [R(R + 2) + S(S + 1)] Ŷ RS
X,Y,mX ,mY

3∑
i=1

[Xi, [Xi, Ŷ
RS
X,Y,mX ,mY

]] = X(X + 1) Ŷ RS
X,Y,mX ,mY

[X3, Ŷ
RS
X,Y,mX ,mY

] = mX Ŷ RS
X,Y,mX ,mY

3∑
i=1

[Yi, [Yi, Ŷ
RS
X,Y,mX ,mY

]] = Y (Y + 1) Ŷ RS
X,Y,mX ,mY

[Y3, Ŷ
RS
X,Y,mX ,mY

] = mY Ŷ RS
X,Y,mX ,mY

(4.11)

The Ŷ RS
X,Y,mX ,mY

are orthonormal:

tr
[
Ŷ RS
X,Y,mX ,mY

(Ŷ R′ S′

X′,Y ′,mX′ ,mY ′)
†
]
= δR,R′ δS,S′ δX,X′ δY,Y ′ δmX ,mX′ δmY ,mY ′ (4.12)

and have the following conjugation properties:

(Ŷ RS
X,Y,mX ,mY

)† = (−1)1+R−S+X+Y+mX+mY Ŷ RS
X,Y,−mX ,−mY

(Ŷ RS
X,Y,mX ,mY

)∗ = −(Ŷ RS
X,Y,mX ,mY

)
(4.13)

The dimension of a particular so(5) irrep (RS) determines the number of fuzzy harmonics with
label (RS) [GV18]:

dimso(5) (R, S) =
(2R + 2S + 3)(2R− 2S + 1)(2R + 1)(2S + 2)

6
(4.14)

Ŷ RS
X,Y,mX ,mY

can again be represented by a k-dimensional matrix; in the following the label n will be
used to characterize the dimension of the matrices. The two labels are related through the following
equation:

k =
(n+ 3)(n+ 2)(n+ 1)

6
(4.15)

To create an ONB for k × k matrices out of the so(5) fuzzy harmonics, all Ŷ RS
X,Y,mX ,mY

with
0 ≤ R− S ≤ R + S ≤ n where R, S are either both integer or both half integers have to be

4. Fusion coefficients for fuzzy harmonics 36

included. To see that this way a square number of fuzzies is obtained can be proven by induction.
For that Φ(n) shall describe the number of fuzzies which fulfill the condition mentioned above.

assumption:

Φ(n) =
((n+ 1)(n+ 2)(n+ 3))2

36
= k2

initial case:

Φ(0) =
((0 + 1)(0 + 2)(0 + 3))2

36
= 12

induction step:

Φ(n+ 1) = Φ(n) + dim (n+ 1, 0) + dim

(
n+

1

2
,
1

2

)
+ . . .+ dim

(
n+ 1

2
,
n+ 1

2

)
= Φ(n) +

n−1∑
k=−2

dim
(
n− m

2
, 1 +

m

2

)
=

((n+ 1)(n+ 2)(n+ 3))2

36
+

(2n+ 5)(n2 + 5n+ 6)2

12

=
((n+ 2)(n+ 3)(n+ 4))2

36
= k′2

(4.16)

The possible values for the matrix dimension are limited to: k = 1, 4, 10, 20, . . .
In summary the set of all fuzzies Ŷ RS

X,Y,mX ,mY
with 0 ≤ R− S ≤ R + S ≤ n where R, S are either

both integer or both half integers form a basis for all complex k × k matrices which allows again the
following fusion expansion. Here the label vector L⃗i = (Ri, Si, Xi, Yi,mXi

,mYi
) is introduced.

ŶL⃗1
ŶL⃗2

=
∑
L⃗3

F L⃗3

L⃗1;L⃗2
ŶL⃗3

(4.17)

The sum in eq. (4.17) runs over all (R3 S3) values that meet the conditions described above, over all
X3, Y3 values contained in each (R3 S3) and over all mX3 ,mY3 values that are contained in X3, Y3.
The fusion coefficients F L⃗3

L⃗1;L⃗2
are obtained by evaluating the following triple trace:

F L⃗3

L⃗1;L⃗2
= tr

[
ŶL⃗1

ŶL⃗2

(
ŶL⃗3

)†]
(4.18)

The trace is evaluated using the following formula for any operator Â:

tr[Â] =
∑
X, Y

mX ,mY

⟨R, S,X, Y,mX ,mY | Â |R, S,X, Y,mX ,mY ⟩ (4.19)

4. Fusion coefficients for fuzzy harmonics 37

For the calculation the following identity relation is needed with R, S chosen s.t. dim(R, S) = k

1 =
∑
X, Y

mX ,mY

|R, S,X, Y,mX ,mY ⟩ ⟨R, S,X, Y,mX ,mY | (4.20)

After inserting two identities and using the Wigner-Eckhart theorem [CSM10] as well as the
conjugation property (4.3) the following expression for the triple trace is obtained.

tr

[
ŶL⃗1

ŶL⃗2

(
ŶL⃗3

)†]
= (−1)1+R3−S3+X3+Y3+mX3

+mY3

×
∑
Xi

′, Yi
′

mXi
′ ,mYi

′

⟨R, S,X2
′, Y2

′,mX2
′ ,mY2

′ ;R1, S1, X1, Y1,mX1 ,mY1|R, S,X1
′, Y1

′,mX1
′ ,mY1

′⟩

⟨R, S,X3
′, Y3

′,mX3
′ ,mY3

′ ;R2, S2, X2, Y2,mX2 ,mY2|R, S,X2
′, Y2

′,mX2
′ ,mY2

′⟩

⟨R, S,X1
′, Y1

′,mX1
′ ,mY1

′ ;R3, S3, X3, Y3,−mX3 ,−mY3|R, S,X3
′, Y3

′,mX3
′ ,mY3

′⟩

(4.21)

Now Racah’s factorization lemma [Rac49] is exploited. The lemma is responsible for the appearance
of the so called reduced matrix element ρi = ρ(R, S,Ri, Si) which will be calculated later. In
addition the so(3) coupling coefficients are rewritten as 3j-symbols, which gives rise to some
additional phase factors.

tr

[
ŶL⃗1

ŶL⃗2

(
ŶL⃗3

)†]
= (−1)1+R3−S3+X3+Y3+mX3

+mY3
−X1−X2−X3−Y1−Y2−Y3 ρ1 ρ2 ρ3

×
∑
Xi

′, Yi
′

mXi
′ ,mYi

′

⟨R, S,X2
′, Y2

′;R1, S1, X1, Y1||R, S,X1
′, Y1

′⟩
√
2X1

′ + 1
√

2Y1
′ + 1

⟨R, S,X3
′, Y3

′;R2, S2, X2, Y2||R, S,X2
′, Y2

′⟩
√

2X2
′ + 1

√
2Y2

′ + 1

⟨R, S,X1
′, Y1

′;R3, S3, X3, Y3||R, S,X3
′, Y3

′⟩
√
2X3

′ + 1
√

2Y3
′ + 1

(−1)X2
′+mX1

′+Y2
′+mY1

′

(
X2

′ X1 X1
′

mX2
′ mX1 −mX1

′

)(
Y2

′ Y1 Y1
′

mY2
′ mY1 −mY1

′

)
(−1)X3

′+mX2
′+Y3

′+mY2
′

(
X3

′ X2 X2
′

mX3
′ mX2 −mX2

′

)(
Y3

′ Y2 Y2
′

mY3
′ mY2 −mY2

′

)
(−1)X1

′+mX3
′+Y1

′+mY3
′

(
X1

′ X3 X3
′

mX1
′ −mX3 −mX3

′

)(
Y1

′ Y3 Y3
′

mY1
′ −mY3 −mY3

′

)

(4.22)

4. Fusion coefficients for fuzzy harmonics 38

All that is left to do is to calculate the reduced matrix element ρi. For that the following double trace
is evaluated explicitly, starting in a similar way as for the triple trace:

tr

[
ŶL⃗1

(
ŶL⃗2

)†]
= ρ1 ρ2 (−1)1+R2−S2+X2+Y2+mX2

+mY2
+X1+X2+Y1+Y2

×
∑
Xi

′,Yi
′

√
(2X1

′ + 1)(2Y1
′ + 1) ⟨R, S,X2

′, Y2
′;R1, S1, X1, Y1||R, S,X1

′, Y1
′⟩

√
(2X2

′ + 1)(2Y2
′ + 1) ⟨R, S,X1

′, Y1
′;R2, S2, X2, Y2||R, S,X2

′, Y2
′⟩

×
∑

mXi
′ ,mYi

′

(−1)−mX1
′−mX2

′−mY1
′−mY2

′

(
X2

′ X1 X1
′

mX2
′ mX1 −mX1

′

)(
Y2

′ Y1 Y1
′

mY2
′ mY1 −mY1

′

)

(−1)−X1
′−X2

′−Y1
′−Y2

′
(

X1
′ X2 X2

′

mX1
′ −mX2 −mX2

′

)(
Y1

′ Y2 Y2
′

mY1
′ −mY2 −mY2

′

)
(4.23)

Next the symmetry relations and the completeness of the 3j-symbols are exploited ([Mat23]). For the
reduced so(5) coupling coefficients one could pursue a similar approach to completely eliminate the
sum over so(4) labels. The symmetry relations unfortunately aren’t as approachable as it is the case
for the 3j-symbols. They can be found in Appendix 2 of [Hec65]. Since the calculation of the
reduced so(5) coupling coefficients and the summation over them is done easily with the python
code, here the sum is left as is. After some algebra and setting L⃗2 = L⃗1 the following expression is
obtained:

tr

[
ŶL⃗1

(
ŶL⃗1

)†]
= ρ1

2 (−1)1+R1−S1−X1−Y1
1

(2X1 + 1)(2Y1 + 1)

×
∑
Xi

′,Yi
′

(−1)−X1
′−Y1

′
√

(2X1
′ + 1)(2Y1

′ + 1) ⟨R, S,X1
′, Y1

′;R1, S1, X1, Y1||R, S,X2
′, Y2

′⟩

(−1)X2
′+Y2

′
√
(2X2

′ + 1)(2Y2
′ + 1) ⟨R, S,X2

′, Y2
′;R1, S1, X1, Y1||R, S,X1

′, Y1
′⟩

(4.24)

Since the fuzzy harmonics are orthonormalized, this double trace should be equal to 1 which allows
the formulation of an explicit expression for ρ1:

ρ1 = (−1)
1
2
(−1−R1+S1+X1+Y 1)

√
(2X1 + 1)(2Y1 + 1)(∑

Xi
′,Yi

′

(−1)−X1
′−Y1

′
√
(2X1

′ + 1)(2Y1
′ + 1) ⟨R, S,X1

′, Y1
′;R1, S1, X1, Y1||R, S,X2

′, Y2
′⟩

(−1)X2
′+Y2

′
√
(2X2

′ + 1)(2Y2
′ + 1) ⟨R, S,X2

′, Y2
′;R1, S1, X1, Y1||R, S,X1

′, Y1
′⟩

)− 1
2

(4.25)

4. Fusion coefficients for fuzzy harmonics 39

4.2.1. Ex.: 4d-representation of ŶL⃗

To test the code version of formula (4.22) which can be found in section A.2.2 the 4-dimensional
representation of ŶL⃗ is looked at. The 10 generators of so(5) have the following 4-d representations:

X1 =

0 1

2
0 0

1
2

0 0 0
0 0 0 0
0 0 0 0

X2 =

0 −i

2
0 0

i
2

0 0 0
0 0 0 0
0 0 0 0

X3 =

1
2

0 0 0
0 −1

2
0 0

0 0 0 0
0 0 0 0

Y1 =

0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 1
2

0

Y2 =

0 0 0 0
0 0 0 0
0 0 0 −i

2

0 0 i
2

0

Y3 =

0 0 0 0
0 0 0 0
0 0 1

2
0

0 0 0 −1
2

T++ =

0 0 0 −i

2

0 0 0 0
0 −i

2
0 0

0 0 0 0

 T+− =

0 0 −1

2
0

0 0 0 0
0 0 0 0
0 1

2
0 0

T−+ =

0 0 0 0
0 0 0 1

2
−1
2

0 0 0
0 0 0 0

 T−− =

0 0 0 0
0 0 −i

2
0

0 0 0 0
−i
2

0 0 0

(4.26)

Here the Xi and Yi generators span two separate so(3) algebras that each fulfill the usual so(3)
commutation relation. Together these two algebras form the algebra of so(4) ∼ so(3)× so(3). The 4
additional generators T±± connect these two subalgebras.
The dimension of 4 fixes n = 1. The fuzzy harmonics that span the whole 16-dimensional space of
4× 4 matrices have so(5) labels (R, S) ∈ {(0, 0), (0.5, 0.5), (1, 0)} as described in section 4.2.
Now the task consists of finding the 4d-fuzzies Ŷ RS

X,Y,mX ,mY
with the above mentioned so(5) labels

that fulfill the relevant eigenvalue equations (4.11), are properly normalized according to eq. (4.12)
and have the right conjugation properties (4.13). The sign of each fuzzy is chosen such that the

reduced matrix element calculated by using the Wigner-Eckhart theorem ρ1 =

〈
L⃗′|Y

L⃗1
|L⃗

〉
⟨L⃗′;L⃗1|L⃗⟩ matches

with the result from eq. (4.25).
The concrete procedure can be found as comments in the code attached in section A.2.2, here the
resulting matrices are presented without a detailed derivation:

4. Fusion coefficients for fuzzy harmonics 40

Ŷ 0 0
0,0,0,0 =

i
2

0 0 0

0 i
2

0 0

0 0 i
2

0

0 0 0 i
2

 Ŷ
1
2

1
2

0,0,0,0 =

−i
2

0 0 0

0 −i
2

0 0

0 0 i
2

0

0 0 0 i
2

Ŷ
1
2

1
2

1
2
, 1
2
, 1
2
, 1
2

=

0 0 0 −i√

2

0 0 0 0

0 i√
2

0 0

0 0 0 0

 Ŷ
1
2

1
2

1
2
, 1
2
, 1
2
,− 1

2

=

0 0 i√

2
0

0 0 0 0

0 0 0 0

0 i√
2

0 0

Ŷ
1
2

1
2

1
2
, 1
2
,− 1

2
, 1
2

=

0 0 0 0

0 0 0 −i√
2

−i√
2

0 0 0

0 0 0 0

 Ŷ
1
2

1
2

1
2
, 1
2
,− 1

2
,− 1

2

=

0 0 0 0

0 0 i√
2

0

0 0 0 0
−i√
2

0 0 0

Ŷ 1 0
0,1,0,−1 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 −i 0

 Ŷ 1 0
0,1,0,0 =

0 0 0 0

0 0 0 0

0 0 −i√
2

0

0 0 0 i√
2

Ŷ 1 0
0,1,0,1 =

0 0 0 0

0 0 0 0

0 0 0 i

0 0 0 0

 Ŷ 1 0
1,0,−1,0 =

0 0 0 0

−i 0 0 0

0 0 0 0

0 0 0 0

Ŷ 1 0
1,0,0,0 =

−i√
2

0 0 0

0 i√
2

0 0

0 0 0 0

0 0 0 0

 Ŷ 1 0
1,0,1,0 =

0 i 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Ŷ 1 0
1
2
, 1
2
, 1
2
, 1
2
=

0 0 0 i√

2

0 0 0 0

0 i√
2

0 0

0 0 0 0

 Ŷ 1 0
1
2
, 1
2
, 1
2
,− 1

2
=

0 0 −i√

2
0

0 0 0 0

0 0 0 0

0 i√
2

0 0

Ŷ 1 0
1
2
, 1
2
,− 1

2
, 1
2
=

0 0 0 0

0 0 0 i√
2

−i√
2

0 0 0

0 0 0 0

 Ŷ 1 0
1
2
, 1
2
,− 1

2
,− 1

2
=

0 0 0 0

0 0 −i√
2

0

0 0 0 0
−i√
2

0 0 0

(4.27)

4. Fusion coefficients for fuzzy harmonics 41

These 16 so(5) fuzzy harmonics are saved in the code attached in sec.A.2.2 using the dictionary
fuzzy_dict with the corresponding eigenvalues (R, S,X, Y,mX ,mY) as the associated keys.
To test the fusion coefficient formula and the python implementation of it, first the following product
is looked at:

Ŷ 1 0
1,0,1,0 · Ŷ 1 0

1,0,−1,0 =

0 i 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ·

0 0 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 =

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (4.28)

The resulting product can be expressed as a linear combination of 3 fuzzy harmonics:
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 =
i

2
Ŷ

1
2

1
2

0,0,0,0 −
i

2
Ŷ 0 0
0,0,0,0 +

i√
2
Ŷ 1 0
1,0,0,0 (4.29)

This in turn fixes 3 so(5) fusion coefficients that the code can be tested on:

F
1
2
, 1
2
,0,0,0,0

(1,0,1,0,1,0);(1,0,1,0,−1,0) =
i

2

F 0,0,0,0,0,0
(1,0,1,0,1,0);(1,0,1,0,−1,0) =

−i

2

F 1,0,1,0,0,0
(1,0,1,0,1,0);(1,0,1,0,−1,0) =

i√
2

(4.30)

The python implementation indeed reproduces the correct values for these 3 choices of L⃗1,L⃗2 and
L⃗3. All that remains to to is verify that the code returns the correct values for all possible products of
two fuzzy harmonics. For this the program loops through every possible combination of two fuzzies,
evaluates their product and compares the resulting matrix to the fusion expansion on the right hand
side of eq. (4.17). This test also executed successfully, which verifies the fusion coefficient formula
and it’s implementation for the 4-d example.
Like in the so(3) case, this gives a pretty good indication that the fusion coefficient formula also
works for higher values of n.

5. Conclusion 42

5. Conclusion

A. Complete python implementation 43

A. Complete python implementation

A.1. Coupling coefficients of SO(5)

1 import numpy as np
2 from numpy import sqrt
3 from scipy.linalg import null_space
4 from time import perf_counter
5 from sympy.physics.wigner import wigner_6j
6

7 def MatrixElements(R, S, X, Y, X_T, Y_T):
8 """Matrix-elements for T_{+1/2,+1/2},T_{-1/2,+1/2},
9 T_{+1/2,-1/2},T_{-1/2,-1/2}"""

10 if X_T == 1/2 and Y_T == 1/2:
11 # < (R, S), (X+1/2,Y+1/2) | T_{+1/2, +1/2} | (R, S), (X, Y) >
12 N = sqrt((R+S-X-Y)*(R+S+X+Y+3)*(S-R+X+Y+1)*(R-S+X+Y+2))
13 D = 2*sqrt(2*(X+1/2)+1)*sqrt(2*(Y+1/2)+1)
14 return N / D
15 elif X_T == 1/2 and Y_T == -1/2:
16 # < (R, S), (X+1/2,Y-1/2) | T_{+1/2, -1/2} | (R, S), (X, Y) >
17 N = sqrt((R+S-X+Y+1)*(R+S+X-Y+2)*(R-S-X+Y)*(R-S+X-Y+1))
18 D = 2*sqrt(2*(X+1/2)+1)*sqrt(2*(Y-1/2)+1)
19 return N / D
20 elif X_T == -1/2 and Y_T == 1/2:
21 # < (R, S), (X-1/2,Y+1/2) | T_{-1/2, +1/2} | (R, S), (X, Y) >
22 N = sqrt((R+S-X+Y+2)*(R+S+X-Y+1)*(R-S-X+Y+1)*(R-S+X-Y))
23 D = 2*sqrt(2*(X-1/2)+1)*sqrt(2*(Y+1/2)+1)
24 return N / D
25 elif X_T == -1/2 and Y_T == -1/2:
26 # < (R, S), (X-1/2, Y-1/2) | T_{-1/2, -1/2} | (R, S), (X, Y) >
27 N = -sqrt((R+S-X-Y+1)*(R+S+X+Y+2)*(S-R+X+Y)*(R-S+X+Y+1))
28 D = 2*sqrt(2*(X-1/2)+1)*sqrt(2*(Y-1/2)+1)
29 return N / D
30

31 def ReCouplingCoefficients(X1,Y1,X2,Y2,X12,Y12,X3,Y3,X,Y,X23,Y23):
32 try:
33 return float((-1)**(X1+X2+X3+X) * (-1)**(Y1+Y2+Y3+Y) *
34 sqrt(2*X12+1)*sqrt(2*X23+1)*wigner_6j(X1,X2,X12,X3,X,X23)
35 *sqrt(2*Y12+1)*sqrt(2*Y23+1)*wigner_6j(Y1,Y2,Y12,Y3,Y,Y23))
36 except ValueError:
37 return 0

A. Complete python implementation 44

38 def PhaseFactor(X1, Y1, X2, Y2, X, Y):
39 return (-1)**(X1+X2-X) * (-1)**(Y1+Y2-Y)
40

41 def IsValid(X1, Y1, X2, Y2, X, Y):
42 """Condition for (X1,Y1) x (X2,Y2) --> (X, Y) for SO(4)"""
43 X_steps = (X1 + X2) - abs(X1 - X2)
44 Y_steps = (Y1 + Y2) - abs(Y1 - Y2)
45 for i in range(int(X_steps) + 1):
46 for j in range(int(Y_steps) + 1):
47 X_p = abs(X1 - X2) + i; Y_p = abs(Y1 - Y2) + j
48 if X == X_p and Y == Y_p:
49 return True
50 return False
51

52 def Indexing(R1, S1, R2, S2, R, S):
53 """Gives the order of coupling-coefficients,
54 as returned by CouplingCoefficients()"""
55 # List to store valid triplets of SO(2) irrep labels
56 ordering = []
57 # Loop through all the SO(4) irreps in (R1, S1), (R2, S2), (R, S)
58 for k1 in range(int(2 * (R1 - S1)) + 1):
59 for l1 in range(int(2 * S1) + 1):
60 for k2 in range(int(2 * (R2 - S2)) + 1):
61 for l2 in range(int(2 * S2) + 1):
62 for k in range(int(2 * (R - S)) + 1):
63 for l in range(int(2 * S) + 1):
64 # Construct the SO(4) irrep labels
65 Z1 = R1 - k1 / 2 - l1 / 2
66 W1 = S1 + k1 / 2 - l1 / 2
67 Z2 = R2 - k2 / 2 - l2 / 2
68 W2 = S2 + k2 / 2 - l2 / 2
69 Z = R - k / 2 - l / 2
70 W = S + k / 2 - l / 2
71 # Checks if:
72 # (Z1, W1) x (Z2, W2) --> (Z, W)
73 if IsValid(Z1, W1, Z2, W2, Z, W):
74 # Append ((P1,Q1), (P2,Q2), (P,Q))
75 ordering.append([(Z1,W1),(Z2,W2),(Z,W)])
76 # Return the ordering list for valid SO(4) triplets
77 return ordering
78

79 def Coupling_Conditions(R1,S1,X1,Y1,R2,S2,X2,Y2,R,S,X,Y,X_s,Y_s,X_T,Y_T):
80 """All relations for given (X1, Y1) and (X2, Y2) in the lattice
81 first choose a set of three dummy SO(4) irrep labels:
82 ((Z1,W1), (Z2,W2), (Z,W)), given the following branching conditions:
83 (R1,S1) --> (Z1,W1) , (R2,S2) --> (Z2,W2) , (R,S) --> (Z,W)
84 Secondly, we choose SO(4) irrep labels ((X1_s,Y1_s), (X2_s,Y2_s)),
85 given the following branching conditions:
86 (X_T,Y_T) x (X1_s,Y1_s)-->(X1,Y1), (X_T,Y_T) x (X2_s,Y2_s)-->(X2,Y2)"""

A. Complete python implementation 45

87 # List to store relation between reduced cc (as a row of the matrix)
88 relation = []
89 #Loop through all the SO(4) irreps in (R1,S1), (R2,S2), (R,S)
90 for k1 in range(int(2 * (R1 - S1)) + 1):
91 for l1 in range(int(2 * S1) + 1):
92 for k2 in range(int(2 * (R2 - S2)) + 1):
93 for l2 in range(int(2 * S2) + 1):
94 for k in range(int(2 * (R - S)) + 1):
95 for l in range(int(2 * S) + 1):
96 #Construct the SO(4) irrep labels
97 Z1 = R1 - k1 / 2 - l1 / 2
98 W1 = S1 + k1 / 2 - l1 / 2
99 Z2 = R2 - k2 / 2 - l2 / 2

100 W2 = S2 + k2 / 2 - l2 / 2
101 Z = R - k / 2 - l / 2
102 W = S + k / 2 - l / 2
103 #Checks if: (Z1,W1) x (Z2,W2)-->(Z,W)
104 if IsValid(Z1, W1, Z2, W2, Z, W):
105 #Variable indicating whether a match has been found
106 conditionMet = False
107

108 #Checks if the coupling coefficient:
109 #((R1,S1),(Z1,W1);(R2,S2),(Z2,W2)|(R,S),(Z,W))
110 #match the coupling coefficient:
111 #((R1,S1),(X1,Y1);(R2,S2),(X2,Y2)|(R,S),(X,Y))
112 if (Z1,W1)==(X1,Y1)\
113 and (Z2,W2)==(X2,Y2)\
114 and (Z,W)==(X,Y):
115 #coefficient for the cc:
116 #((R1,S1),(X1,Y1);(R2,S2),(X2,Y2)|(R, S), (X, Y)) is:
117 #<(R,S),(X,Y)|T_(X_T,Y_T)|(R,S),(X_s,Y_s)>
118 relation.append(\
119 MatrixElements(R,S,X_s,Y_s,X_T,Y_T))
120 # Match has been found
121 conditionMet = True
122 # Loop over all T_(X1_T,Y1_T):
123 for X1_T in [1/2,-1/2]:
124 for Y1_T in [1/2,-1/2]:
125 # <(R1,S1),(X1,Y1)|T_(X_T,Y_T) ~ <(R1,S1),(X1-X_T, Y1-Y_T)|
126 # Note: we should loop over all (X1_s, Y1_s), consistent with:
127 # (X_T,Y_T)x(X1_s,Y1_s)-->(X1,Y1)
128 X1_s = X1 - X1_T
129 Y1_s = Y1 - Y1_T
130

131 # Checks if the cc: ((R1,S1),(Z1,W1);(R2,S2),(Z2,W2)|(R,S),(Z,W))
132 # match the cc: ((R1,S1),(X1_s,Y1_s);(R2,S2),(X2,Y2)|(R,S),(X_s,Y_s))
133 if (Z1,W1)==(X1_s,Y1_s) and \
134 (Z2,W2)==(X2,Y2) and \
135 (Z,W)==(X_s,Y_s):

A. Complete python implementation 46

136 # The coefficient for the cc:
137 # ((R1,S1),(X1_s,Y1_s)(R2,S2),(X2,Y2)|(R,S),(X_s,Y_s)) is:
138 # <(R1,S1),(X1,Y1)| T_(X_T, Y_T)|(R1,S1),(X1_s,Y1_s)>
139 relation.append(\
140 -PhaseFactor(\
141 X1, Y1, X2, Y2, X, Y)\
142 *PhaseFactor(\
143 X1_s,Y1_s,X2,Y2,X_s,Y_s)\
144 *ReCouplingCoefficients(\
145 X2, Y2,X1_s,Y1_s,X_s,Y_s\
146 ,1/2, 1/2, X, Y, X1, Y1)\
147 *MatrixElements(\
148 R1,S1,X1_s,Y1_s,X1_T,Y1_T))
149 # Match has been found
150 conditionMet = True
151

152 # Loop over all T_(X2_T, Y2_T):
153 for X2_T in [1/2, -1/2]:
154 for Y2_T in [1/2, -1/2]:
155 #<(R2,S2),(X2,Y2)|T_(X_T, Y_T)~<(R2, S2),(X2-X_T,Y2-Y_T)|
156 #Note: we should loop over all (X2_s, Y2_s),
157 #consistent with:(X_T,Y_T)x(X2_s,Y2_s)-->(X2,Y2)
158 X2_s = X2 - X2_T
159 Y2_s = Y2 - Y2_T
160

161 #Checks if the cc:((R1,S1),(Z1,W1);(R2,S2),(Z2,W2)|(R,S),(Z,W))
162 #match the cc:((R1,S1),(X1,Y1);(R2,S2),(X2_s,Y2_s)|(R,S),(X_s,Y_s))
163 if (Z1,W1)==(X1,Y1)\
164 and (Z2, W2)==(X2_s,Y2_s)\
165 and (Z,W)==(X_s, Y_s):
166 # The coefficient for the cc:
167 #((R1,S1),(X1,Y1);(R2,S2),(X2_s,Y2_s)|(R,S),(X_s,Y_s)) is:
168 #<(R2,S2),(X2,Y2)|T_(X_T,Y_T)|(R2, S2),(X2_s, Y2_s)>
169 relation.append(\
170 -ReCouplingCoefficients(\
171 X1,Y1, X2_s, Y2_s, X_s, Y_s\
172 ,1/2, 1/2, X, Y, X2, Y2)
173 *MatrixElements(\
174 R2,S2,X2_s,Y2_s,X2_T,Y2_T))
175 # Match has been found
176 conditionMet = True
177

178 # The cc:((R1, S1), (Z1, W1); (R2, S2), (Z2, W2) | (R, S), (Z, W))
179 # does not match any coupling coefficient in the current relation
180 if not conditionMet:
181 relation.append(0)
182

183 # return the coefficients of the current relation
184 return relation

A. Complete python implementation 47

185 def Linear_System_Matrix(R1, S1, R2, S2, R, S):
186 """Computes the non normalized coupling-coefficients
187 First choose a set of four SO(4) irrep labels:
188 ((X1,Y1),(X2,Y2),(X,Y),(X_s,Y_s)), and a generator in SO(5)
189 but not in SO(4): T_(X_T,Y_T) with X_T,Y_T =+1/2,-1/2,
190 given the following branching conditions:
191 (R1,S1)-->(X1,Y1), (R2,S2)-->(X2,Y2), (R,S)-->(X_s,Y_s)
192 (X1,Y1) x (X2,Y2)-->(X,Y), (X_T,Y_T) x (X_s,Y_s)-->(X, Y)
193 Note: we must allow (R, S) -/-> (X, Y), in order to get a
194 sufficient number of relations whenever (R, S) = (0, 0)
195 """
196 # List to store relations between reduced cc (as a matrix)
197 relations = []
198 # Loop through all the SO(4) irreps in (R1,S1), (R2,S2), (R,S)
199 for n1 in range(int(2 * (R1 - S1)) + 1):
200 for m1 in range(int(2 * S1) + 1):
201 for n2 in range(int(2 * (R2 - S2)) + 1):
202 for m2 in range(int(2 * S2) + 1):
203 for n_s in range(int(2 * (R - S)) + 1):
204 for m_s in range(int(2 * S) + 1):
205

206 # Loop over all T_(X_T, Y_T):
207 for X_T in [1/2, -1/2]:
208 for Y_T in [1/2, -1/2]:
209

210 # Construct the SO(4) irrep labels:
211 X1 = R1 - n1 / 2 - m1 / 2
212 Y1 = S1 + n1 / 2 - m1 / 2
213 X2 = R2 - n2 / 2 - m2 / 2
214 Y2 = S2 + n2 / 2 - m2 / 2
215 X_s = R - n_s / 2 - m_s / 2
216 Y_s = S + n_s / 2 - m_s / 2
217 # T_(X_T, Y_T) |(R,S), (X_s,Y_s)> ~ |(R,S), (X_s+X_T, Y_s+Y_T)>
218 # loop over all (X,Y), consistent with: (X_T,Y_T)x(X_s,Y_s)-->(X, Y)
219

220 X = X_s + X_T
221 Y = Y_s + Y_T
222

223 # Checks if: (X1, Y1) x (X2, Y2) --> (X, Y)
224 if IsValid(X1, Y1, X2, Y2, X, Y):
225

226 # Get the relation between reduced cc for the SO(4) irrep labels:
227 #((X1,Y1), (X2,Y2), (X,Y), (X_s,Y_s))
228 relation=Coupling_Conditions(\
229 R1,S1,X1,Y1,R2,S2,X2,Y2,R,S,\
230 X,Y,X_s,Y_s,X_T,Y_T)
231 relations.append(relation)
232 # Return the list of all relation between reduced cc, as a matrix
233 return relations

A. Complete python implementation 48

234 def scalar_product(vec1,vec2,R1,S1,R2,S2,R,S,X_S,Y_S):
235 """ XS,Y_S should be chosen such that (R,S)-->(X_S,Y_S)
236 vec1 and vec2 should be of same length
237 """
238 scalar_product=0
239 RS_lst=Indexing(R1, S1, R2, S2, R, S)
240 i=0
241 while i<len(vec1):
242 if RS_lst[i][2]==(X_S,Y_S):
243 scalar_product+=vec1[i]*vec2[i]
244 i+=1
245 return scalar_product
246

247 def gram_schmidt(vec_list,R,S,R1,S1,R2,S2):
248 """
249 Input:vec_list:list of vectors the gram-schmidt procedure is done to
250 Returns:new_vec_list: new ONB calculated through gram-schmidt
251 """
252 i=0
253 new_vec_list=[]
254 while i<len(vec_list):
255 s=0
256 for j in range(i):
257 s+=scalar_product(new_vec_list[j],vec_list[i],\
258 R1,S1,R2,S2,R,S,R,S)*new_vec_list[j]
259 new_vec_list.append(vec_list[i]-s)
260 new_vec_list[i]=new_vec_list[i]/np.sqrt(scalar_product(\
261 new_vec_list[i],new_vec_list[i],R1,S1,R2,S2,R,S,R,S))
262 i+=1
263 return new_vec_list
264

265 def CouplingCoefficients(R1, S1, R2, S2, R, S):
266 """Computes the normalized coupling coefficients"""
267 # Get the Linear system matrix for the
268 # particular choices of (R1, S1), (R2, S2), (R, S)
269 M = np.array(Linear_System_Matrix(R1, S1, R2, S2, R, S))
270

271 # Compute the null vector of the Linear system matrix
272 # This will be the non-normalized coupling-coefficients
273 # Note: in case the outer multiplicity of (R, S) is not 1,
274 # there will be multiple null vectors.These run through
275 # the Gram-Schmidt procedure to obtain the coupling-coefficients
276

277 NullVector = null_space(M)
278 nullvec_list=[]
279 for i in range(np.ma.size(NullVector,1)):
280 nullvec_list+=[NullVector[:,i]]
281 nullvec_list=gram_schmidt(nullvec_list,R,S,R1,S1,R2,S2)
282 return nullvec_list

A. Complete python implementation 49

283 def ONB_test(nullvec_basis,R1,S1,R2,S2,R,S):
284 """
285 creates a square matrix with same size as the dim of the nullspace.
286 It is supposed to be the unity matrix if "nullvec_basis" is an ONB
287 """
288 coupling_coefficients=nullvec_basis
289 dim=len(coupling_coefficients)
290 ONB_test=np.zeros((dim,dim))
291 for i in range(dim):
292 for j in range(dim):
293 ONB_test[i,j]=scalar_product(coupling_coefficients[i],\
294 coupling_coefficients[j],R1,S1,R2,S2,R,S,R,S)
295 return ONB_test
296

297 # first example of irrep labels with a 1-D nullspace
298 # R1=1; S1=1; R2=1; S2=1; R=1; S=1
299 # third example of irrep labels with a 4-D nullspace
300 # R1=2; S1=1; R2=2; S2=1; R=2; S=1
301

302 #the following section deals with the 2-D example:
303 R1=1; S1=0; R2=1; S2=0.5; R=1; S=0.5
304 #since there is a choice of basis for the 2-D nullspace,
305 #the cc from the code and from the paper differ
306 #if both are valid ONBs one can express one in terms of the other
307 #paper basis: p=[p_0,p_1]; code basis: c=[c_0,c_1]
308 #transformation between the two: p= mat*c, with mat a 2x2 unitary matrix
309 #the elements of this matrix are calculated by taking the scalar product
310 #of the possible combinations of the basis vectors.
311 #this is meant as a check that the code-basis spans the same space
312 #as the paper basis and is also an ONB
313 #to calculate the scalar product it is sufficient
314 #only to look at the coefficients that share the same (X,Y) label
315 #here (X,Y)=(0,0.5) is chosen and 2 subcvectors of c_0,c_1
316 #are created where (X,Y)==(0,0.5) is fulfilled
317 I=Indexing(R1, S1, R2, S2, R, S)
318 code_basis=CouplingCoefficients(R1, S1, R2, S2, R, S)
319

320 sub_0=[]
321 i=0
322 while i<len(I):
323 if I[i][2]==(0,0.5):
324 sub_0.append(code_basis[0][i])
325 i+=1
326 sub_1=[]
327 i=0
328 while i<len(I):
329 if I[i][2]==(0,0.5):
330 sub_1.append(code_basis[1][i])
331 i+=1

A. Complete python implementation 50

332 #small_index is created to keep track of the labels, taken over from I
333 small_index=[]
334 i=0
335 Index=Indexing(R1, S1, R2, S2, R, S)
336 while i<len(Index):
337 if Index[i][2]==(0,0.5):
338 small_index.append(Index[i])
339 i+=1
340 #next the subvectors of the paper-basis with
341 #(X,Y)==(0,0.5) are manually created
342 p_0=np.zeros(4); p_0[0]=0; p_0[1]=np.sqrt(3/10)
343 p_0[2]=np.sqrt(1/2);p_0[3]=np.sqrt(1/5)
344

345 p_1=np.zeros(4); p_1[0]=-np.sqrt(3/7); p_1[1]=-np.sqrt(1/70)
346 p_1[2]=np.sqrt(3/14); p_1[3]=-np.sqrt(12/35)
347

348 #finally the components of the matrix are calculated
349 #here the normal scalar product is used since we are
350 #already in a subspace where (X,Y) is fixed
351

352 mat=np.zeros((2,2))
353 mat[0,0]=np.dot(sub_0,p_0)
354 mat[1,0]=np.dot(sub_0,p_1)
355 mat[0,1]=np.dot(sub_1,p_0)
356 mat[1,1]=np.dot(sub_1,p_1)
357

358 #this matrix is indeed orthogonal as expected
359 #like mentioned above the full cc from the paper can now be obtained by
360 #multiplying this 2x2 matrix with the coefficients from the code:
361 #[p_0,p_1] = mat * [c_o,c_1]
362

363 paper_basis=np.dot(mat, code_basis)
364 paper_basis=list(paper_basis)
365

366 #at the end it is checked if both basis are really an ONB:
367 ONB_test_paper=ONB_test(paper_basis,R1,S1,R2,S2,R,S)
368 ONB_test_code=ONB_test(code_basis, R1, S1, R2, S2, R, S)

A. Complete python implementation 51

A.2. Fusion coefficients for fuzzy harmonics

A.2.1. Fuzzy harmonics on S2

1 import numpy as np
2 import so3_cc
3 from sympy.physics.wigner import wigner_3j
4

5 def fusion(l3,m3,l1,m1,l2,m2,s):
6 exponent=complex(l1+l2+l3+m3)
7 phase1=(-1)**exponent
8 result=phase1*np.sqrt(2*l1+1)*np.sqrt(2*l2+1)*np.sqrt(2*l3+1)
9 summe=0

10 for n1 in np.arange(-s,s+1,1, dtype=float):
11 for n2 in np.arange(-s,s+1,1, dtype=float):
12 for n3 in np.arange(-s, s+1,1, dtype=float):
13 exponent2=complex(3*s+n1+n2+n3)
14 phase2=(-1)**exponent2
15 summe+=phase2*complex(wigner_3j(s, l1, s, n2, m1, -n1))\
16 *complex(wigner_3j(s, l2, s, n3, m2, -n2))\
17 *complex(wigner_3j(s, l3, s, n1, -m3, -n3))
18 result=result*summe
19 return result
20

21 #testing the fusion code on the 2d example
22 s=0.5
23 #manually implementing the pauli matrices:
24 sigma_0=np.identity(2,dtype=complex)
25 sigma_1=np.zeros((2,2),dtype=np.complex64)
26 sigma_1[0,1]=1; sigma_1[1,0]=1
27 sigma_2=np.zeros((2,2),dtype=np.complex64)
28 sigma_2[0,1]=-1j; sigma_2[1,0]=1j
29 sigma_3=np.zeros((2,2),dtype=complex)
30 sigma_3[0,0]=1; sigma_3[1,1]=-1
31

32 #SO(3) generators
33 t_1=1/2*sigma_1; t_2=1/2*sigma_2;t_3=1/2*sigma_3
34 generator_dict={1:t_1,2:t_2,3:t_3}
35 #two helping functions:
36 def commutator(a,b):
37 return (np.dot(a, b)-np.dot(b, a))
38 def levi_civita(i,j,k):
39 if i==j or j==k or i==k:
40 return 0
41 elif (i,j,k)==(1,2,3) or (i,j,k)==(2,3,1) or (i,j,k)==(3,1,2):
42 return 1
43 else:
44 return -1

A. Complete python implementation 52

45 #generator testing:
46

47 gen_test=True
48 for i1,gen1 in list(generator_dict.items()):
49 for i2,gen2 in list(generator_dict.items()):
50 comm=commutator(gen1, gen2)
51 summe=0
52 for i3,gen3 in list(generator_dict.items()):
53 summe+=1j*levi_civita(i1, i2, i3)*gen3
54 if not np.array_equal(comm, summe)==True:
55 gen_test=False
56

57 print("generator comm rel=",gen_test)
58

59 #the commutation relation of SO(3) are fulfilled
60

61 #fuzzy harmonics for l=0 m=0 s=1/2
62 Y_0=1/np.sqrt(2)*sigma_0
63 #fuzzy harmonics for l=1 m=1 s=1/2
64 Y_plus=1j/2*(sigma_1+1j*sigma_2)
65 #fuzzy harmonics for l=1 m=-1 s=1/2
66 Y_minus=1j/2*(sigma_1-1j*sigma_2)
67 #fuzzy harmonics for l=1 m=0 s=1/2
68 Y_3=1/np.sqrt(2)*sigma_3
69

70 fuzzy_dict={(0,0):Y_0,(1,0):Y_3,(1,-1):Y_minus,(1,1):Y_plus}
71

72 #testing of l eigenvalue equation:
73

74 fuzzy_l_test=True
75 for (l,m),fuzzy in list(fuzzy_dict.items()):
76 summe=0
77 for t,gen_t in list(generator_dict.items()):
78 summe+=commutator(gen_t, commutator(gen_t, fuzzy))
79 if not np.array_equal(summe, l*(l+1)*fuzzy):
80 fuzzy_l_test=False
81

82 print("l-eigenvalue eq=",fuzzy_l_test)
83

84 #testing of m eigenvalue equation:
85

86 fuzzy_m_test=True
87 for (l,m),fuzzy in list(fuzzy_dict.items()):
88 if not np.array_equal(commutator(t_3,fuzzy), m*fuzzy):
89 fuzzy_m_test=False
90

91 print("m-eigenvalue eq=",fuzzy_m_test)
92

93 #both defining eigenvalue equations of the fuzzy harmonics are fulfilled

A. Complete python implementation 53

94 #fusion testing for multiplicaton of l=1,m=1; l=1,m=-1 fuzzy harmonics
95 l1=1; l2=1; m1=1; m2=-1
96

97 fusion_prod_test1=np.dot(Y_plus,Y_minus)
98

99 #the result of the multiplication can be written as a linear combination
100 #of Y_0 and Y_3 with coefficients -1/sqrt(2) and -1/sqrt(2)
101 fusion_summe_test1=-1/np.sqrt(2)*Y_0-1/np.sqrt(2)*Y_3
102

103 #This fixes the following two fusion coefficients:
104

105 #for l3=1 m3=0 the coefficient should be -1/sqrt(2)
106 l3=1; m3=0
107

108 fusion_coefficient_test1=fusion1(l3, m3, l1, m1, l2, m2, s)
109

110 #for l3=0 m3=0 the coefficient should be -1/sqrt(2)
111 l3=0; m3=0
112

113 fusion_coefficient_test2=fusion1(l3, m3, l1, m1, l2, m2, s)
114

115 #both is the case !!
116

117 #now lets check all possible products
118

119 fusion_test=True
120 for (l1,m1),fuzzy1 in list(fuzzy_dict.items()):
121 for (l2,m2),fuzzy2 in list(fuzzy_dict.items()):
122 prod=np.dot(fuzzy1,fuzzy2)
123 summe=0
124 for (l3,m3),fuzzy3 in list(fuzzy_dict.items()):
125 summe+=fusion1(l3, m3, l1, m1, l2, m2, s)*fuzzy3
126 if not np.allclose(prod, summe)==True:
127 fusion_test=False
128

129 print("fusion coefficients=",fusion_test)

A. Complete python implementation 54

A.2.2. Fuzzy harmonics on S4

1

2 import numpy as np
3 import so5_cc_numpy
4 from sympy.physics.wigner import wigner_3j
5 from sympy.physics.quantum.cg import CG
6 import math
7

8 def reduced_cc(R1,S1,X1,Y1,R2,S2,X2,Y2,R3,S3,X3,Y3,m):
9 """

10 Returns the reduced so(5) coupling coefficient
11 <R1,S1,X1,Y1;R2,S2,X2,Y2||R3,S3,X3,Y3>
12 from the coupling coefficient code so5_cc.numpy
13

14 if the nullspace is multi-dimensional there are multiple choices for the
15 reduced coupling coefficient. This choice is realized with the variable m
16

17 """
18 triplet=[(X1,Y1),(X2,Y2),(X3,Y3)]
19 cc=so5_cc_numpy.CouplingCoefficients(R1,S1,R2,S2,R3,S3)[m]
20 Indexing_test=so5_cc_numpy.Indexing(R1,S1,R2,S2,R3,S3)
21 i=0
22 match_found=False
23 while i<len(cc):
24 if triplet==Indexing_test[i]:
25 match_found=True
26 return cc[i]
27 i+=1
28 if match_found==False:
29 return 0
30

31 def all_SO4(R,S):
32 all_SO4=[]
33 for n in np.arange(0,2*(R-S)+1,1):
34 for m in np.arange(0,2*S+1,1):
35 X=R-n/2-m/2
36 Y=S+n/2-m/2
37 all_SO4.append((X,Y))
38 return all_SO4
39

40 def dim(R,S):
41 return ((2*R+2*S+3)*(2*R-2*S+1)*(2*S+1)*(2*R+2))/6
42

43 #testing on the 4-d representation R=0.5,S=0
44 R=0.5;S=0;m=0
45

46 #if we would deal with so(5) irreps with outer multiplicity, we would have
47 #to take extra care of the variable "m" and possibly sum over it

A. Complete python implementation 55

48 #first define the 10 generators of so(5):
49

50 L_12=np.zeros((4,4),dtype=complex)
51 L_12[0,0]=1/2; L_12[1,1]=-1/2; L_12[2,2]=1/2; L_12[3,3]=-1/2
52 gen_dict={(1,2):L_12}
53

54 L_13=np.zeros((4,4),dtype=complex)
55 L_13[0,1]=1/2; L_13[1,0]=1/2; L_13[2,3]=1/2; L_13[3,2]=1/2
56 gen_dict[(1,3)]=L_13
57

58 L_23=np.zeros((4,4),dtype=complex)
59 L_23[0,1]=-1j/2; L_23[1,0]=1j/2; L_23[2,3]=-1j/2; L_23[3,2]=1j/2
60 gen_dict[(2,3)]=L_23
61

62 L_24=np.zeros((4,4),dtype=complex)
63 L_24[0,1]=-1/2; L_24[1,0]=-1/2; L_24[2,3]=1/2; L_24[3,2]=1/2
64 gen_dict[(2,4)]=L_24
65

66 L_25=np.zeros((4,4),dtype=complex)
67 L_25[0,3]=1/2; L_25[1,2]=1/2; L_25[2,1]=1/2; L_25[3,0]=1/2
68 genr_dict[(2,5)]=L_25
69

70 L_14=np.zeros((4,4),dtype=complex)
71 L_14[0,1]=-1j/2; L_14[1,0]=1j/2; L_14[2,3]=1j/2; L_14[3,2]=-1j/2
72 gen_dict[(1,4)]=L_14
73

74 L_15=np.zeros((4,4),dtype=complex)
75 L_15[0,3]=1j/2; L_15[1,2]=-1j/2; L_15[2,1]=1j/2; L_15[3,0]=-1j/2
76 gen_dict[(1,5)]=L_15
77

78 L_34=np.zeros((4,4),dtype=complex)
79 L_34[0,0]=1/2; L_34[1,1]=-1/2; L_34[2,2]=-1/2; L_34[3,3]=1/2
80 gen_dict[(3,4)]=L_34
81

82 L_35=np.zeros((4,4),dtype=complex)
83 L_35[0,2]=-1/2; L_35[1,3]=1/2; L_35[2,0]=-1/2; L_35[3,1]=1/2
84 gen_dict[(3,5)]=L_35
85

86 L_45=np.zeros((4,4),dtype=complex)
87 L_45[0,2]=1j/2; L_45[1,3]=1j/2; L_45[2,0]=-1j/2; L_45[3,1]=-1j/2
88 gen_dict[(4,5)]=L_45
89

90 gen_dict[(2,1)]=-L_12; gen_dict[(3,1)]=-L_13
91 gen_dict[(4,1)]=-L_14; gen_dict[(5,1)]=-L_15
92 gen_dict[(3,2)]=-L_23; gen_dict[(4,2)]=-L_24
93 gen_dict[(5,2)]=-L_25; gen_dict[(4,3)]=-L_34
94 gen_dict[(5,3)]=-L_35; gen_dict[(5,4)]=-L_45
95 gen_dict[(1,1)]=gen_dict[(2,2)]=gen_dict[(3,3)]=\
96 gen_dict[(4,4)]=gen_dict[(5,5)]=np.zeros((4,4),dtype=complex)

A. Complete python implementation 56

97

98 gen_dict_so3xso3={"X2":(gen_dict[(2,3)]+gen_dict[(1,4)])/2 \
99 ,"X1":-(gen_dict[(3,1)]+gen_dict[(2,4)])/2 \

100 ,"X3":(gen_dict[(1,2)]+gen_dict[(3,4)])/2 \
101 ,"Y2":(gen_dict[(2,3)]-gen_dict[(1,4)])/2 \
102 ,"Y1":-(gen_dict[(3,1)]-gen_dict[(2,4)])/2 \
103 ,"Y3":(gen_dict[(1,2)]-gen_dict[(3,4)])/2 \
104 ,"T_plus_plus":-(gen_dict[(1,5)]+1j*gen_dict[(2,5)])/2 \
105 ,"T_plus_minus":(gen_dict[(3,5)]+1j*gen_dict[(4,5)])/2 \
106 ,"T_minus_plus":(gen_dict[(3,5)]-1j*gen_dict[(4,5)])/2 \
107 ,"T_minus_minus":(gen_dict[(1,5)]-1j*gen_dict[(2,5)])/2}
108

109 #testing of the generators:
110 def delta(a,b):
111 if a==b:
112 return 1
113 else:
114 return 0
115

116 def comm(a,b):
117 return (np.dot(a, b)-np.dot(b, a))
118

119 gen_test=True
120 for (p,q),G_pq in list(gen_dict.items()):
121 for (r,s),G_rs in list(gen_dict.items()):
122 commutator=comm(G_pq,G_rs)
123 summe=-1j*(delta(q,r)*gen_dict[(p,s)]+delta(p,s)*gen_dict[(q,r)]\
124 +delta(s,q)*gen_dict[(r,p)]+delta(r,p)*gen_dict[(s,q)])
125 if not np.array_equal(commutator,summe)==True:
126 gen_test=False
127

128 print("generator_testing=",gen_test)
129

130

131 #now define the fuzzy harmonics:
132

133 R1=0; S1=0
134 #the R1=0,S1=0 fuzzy has to commute with all other fuzzys so it has to be
135 #proportional to the 4x4 identity matrix:
136 # ==> X=0 Y=0 ==> mx=0, my=0
137 fuzzy=np.identity(4,dtype=complex)
138 fuzzy_dict={(0,0,0,0,0,0):fuzzy}
139

140 R1=1;S1=0
141 # the 10 R1=1,S1=0 fuzzies should be directly proportional to the 10 so(5) gens
142

143 # first a specific example
144

145 fuzzy1=(gen_dict_so3xso3["X1"]+1j*gen_dict_so3xso3["X2"])/2

A. Complete python implementation 57

146 Casimir=0
147 for (g_i,g_j) in [(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)]:
148 Casimir+=comm(gen_dict[(g_i,g_j)],comm(gen_dict[(g_i,g_j)],fuzzy1))
149 Casimir_check=2*(R1*(R1+2)+S1*(S1+1))*fuzzy1
150

151 X_square=comm(gen_dict_so3xso3["X1"],comm(gen_dict_so3xso3["X1"],fuzzy1)) \
152 +comm(gen_dict_so3xso3["X2"],comm(gen_dict_so3xso3["X2"], fuzzy1)) \
153 +comm(gen_dict_so3xso3["X3"],comm(gen_dict_so3xso3["X3"], fuzzy1))
154 X1=1; X_check=X1*(X1+1)*fuzzy1
155

156 Y_square=comm(gen_dict_so3xso3["Y1"],comm(gen_dict_so3xso3["Y1"], fuzzy1)) \
157 +comm(gen_dict_so3xso3["Y2"],comm(gen_dict_so3xso3["Y2"], fuzzy1)) \
158 +comm(gen_dict_so3xso3["Y3"],comm(gen_dict_so3xso3["Y3"], fuzzy1))
159 Y1=0; Y_check=Y1*(Y1+1)*fuzzy1
160

161 X_3=comm(gen_dict_so3xso3["X3"], fuzzy1)
162 Y_3=comm(gen_dict_so3xso3["Y3"], fuzzy1)
163 m_X1=-1; m_Y1=0
164 X_3_check=m_X1*fuzzy1; Y_3_check=m_Y1*fuzzy1
165

166 #fuzzy1 has labels(1,0,1,0,-1,0)
167

168 def Casimir_test(fuzzy,R,S):
169 Casimir=0
170 for (g_i,g_j) in [(1,2),(1,3),(1,4),(1,5),\
171 (2,3),(2,4),(2,5),(3,4),(3,5),(4,5)]:
172 Casimir+=comm(gen_dict[(g_i,g_j)],comm(gen_dict[(g_i,g_j)], fuzzy))
173 if np.array_equal(Casimir, 2*(R*(R+2)+S*(S+1))*fuzzy)==True:
174 #print("Casimir^2 eigenvalue eq. fulfilled")
175 return True
176 else:
177 #print("Casmimir^2 eigenvalue equation not fulfilled")
178 return False
179

180 def X_Y_test(fuzzy,X,Y):
181 X_square=comm(gen_dict_so3xso3["X1"],comm(gen_dict_so3xso3["X1"], fuzzy)) \
182 +comm(gen_dict_so3xso3["X2"],comm(gen_dict_so3xso3["X2"], fuzzy)) \
183 +comm(gen_dict_so3xso3["X3"],comm(gen_dict_so3xso3["X3"], fuzzy))
184 Y_square=comm(gen_dict_so3xso3["Y1"],comm(gen_dict_so3xso3["Y1"], fuzzy)) \
185 +comm(gen_dict_so3xso3["Y2"],comm(gen_dict_so3xso3["Y2"], fuzzy)) \
186 +comm(gen_dict_so3xso3["Y3"],comm(gen_dict_so3xso3["Y3"], fuzzy))
187 if np.array_equal(Y_square,Y*(Y+1)*fuzzy)==True\
188 and np.array_equal(X_square,X*(X+1)*fuzzy)==True:
189 return True
190 #print("X^2 and Y^2 eigenvalue equation fulfilled")
191 else:
192 return False
193 #print("X^2 and Y^2 eigenvalue equation not fulfilled")
194

A. Complete python implementation 58

195 def mx_test(fuzzy,m_X):
196 X_3=commutator(generator_dict_so3xso3["X3"], fuzzy)
197 if np.array_equal(X_3,m_X*fuzzy)==True:
198 return True;#print("X_3 eigenvalue eq. fulfilled")
199 else:
200 return False;#print("X_3 eigenvalue equation not fulfilled")
201

202 def my_test(fuzzy,m_Y):
203 Y_3=commutator(generator_dict_so3xso3["Y3"], fuzzy)
204 if np.array_equal(Y_3,m_Y*fuzzy)==True:
205 return True;#print("Y_3 eigenvalue eq. fulfilled")
206 else:
207 return False;#print("Y_3 eigenvalue equation not fulfilled")
208

209 #testing all eigenvalue equationa of a given the fuzzy harmonic:
210 def fuzzy_test(fuzzy,R,S,X,Y,m_X,m_Y):
211 if Casimir_test(fuzzy, R, S)==True and X_Y_test(fuzzy, X, Y)==True \
212 and mx_test(fuzzy, mx) and my_test(fuzzy, my)==True:
213 return True
214 else:
215 return False
216

217 #we need the ladder operator version of the 10 generators:
218 gen_ladder_dict={"X3":gen_dict_so3xso3["X3"],"Y3":gen_dict_so3xso3["Y3"]\
219 ,"X+":(gen_dict_so3xso3["X1"]+1j*gen_dict_so3xso3["X2"])/2\
220 ,"X-":(gen_dict_so3xso3["X1"]-1j*gen_dict_so3xso3["X2"])/2\
221 ,"Y+":(gen_dict_so3xso3["Y1"]+1j*gen_dict_so3xso3["Y2"])/2\
222 ,"Y-":(gen_dict_so3xso3["Y1"]-1j*gen_dict_so3xso3["Y2"])/2\
223 ,"T++":-(gen_dict[(1,5)]+1j*gen_dict[(2,5)])/2\
224 ,"T+-":(gen_dict[(3,5)]+1j*gen_dict[(4,5)])/2\
225 ,"T-+":(gen_dict[(3,5)]-1j*gen_dict[(4,5)])/2\
226 ,"T--":(gen_dict[(1,5)]-1j*gen_dict[(2,5)])/2}
227

228 #now i want to systematically go through all 10 generators in gen_ladder_dict,
229 #check if the Casimir^2 is fulfilled, then find out the X,Y,m_X,m_Y values:
230

231 for gen_name in list(gen_ladder_dict.keys()):
232 fuzzy=gen_ladder_dict[gen_name]
233 if Casimir_test(fuzzy, R, S)==True:
234 print(gen_name, "Casimir^2 test fulfilled")
235 for (X,Y) in all_SO4(R, S):
236 if X_Y_test(fuzzy, X, Y)==True:
237 print("X=",X); print("Y=",Y)
238 for m_X in np.arange(-X, X+1):
239 for m_Y in np.arange(-Y,Y+1):
240 if mx_test(fuzzy,m_X)==True and my_test(fuzzy,m_Y)==True:
241 print("m_X=",m_X); print("m_Y=",m_Y)
242 fuzzy_dict[(R,S,X,Y,m_X,m_Y)]=fuzzy
243

A. Complete python implementation 59

244 R1=0.5; S1=0.5
245 #the R1=0.5 S1=0.5 fuzzies are given by the remaining tensor product np.kron
246 # of pauli matrices sigma_1,sigma_2,sigma_3 plus the identity sigma_0
247 #that haven’t shown up in gen_dict
248

249 sigma_0=np.identity(2,dtype=complex)
250 sigma_1=np.zeros((2,2),dtype=np.complex64)
251 sigma_1[0,1]=1; sigma_1[1,0]=1
252 sigma_2=np.zeros((2,2),dtype=np.complex64)
253 sigma_2[0,1]=-1j; sigma_2[1,0]=1j
254 sigma_3=np.zeros((2,2),dtype=complex)
255 sigma_3[0,0]=1; sigma_3[1,1]=-1
256

257 #make a function that loops through all possible combinations
258 #of sigma_i,sigma_j pairs,
259 #calculate their kronecker product, check wheater it is contained in gen_dict
260 #and return the key if that is the case
261 #if the tensor product of sigma_i, sigma_j is not contained
262 #add it to a new dictionary kron_dict
263

264 kron_dict={}
265 for i,sigma_i in [(0,sigma_0),(1,sigma_1),(2,sigma_2),(3,sigma_3)]:
266 for j,sigma_j in [(0,sigma_0),(1,sigma_1),(2,sigma_2),(3,sigma_3)]:
267 kron=0.5*np.kron(sigma_i,sigma_j)
268 match_found=False
269 for key,gen in list(gen_dict.items()):
270 if np.array_equal(kron,gen)==True:
271 match_found=True
272 #print("the tensor product of sigma_",i,"and sigma_",j,
273 "is equal to the generator L_",key)
274 if match_found==False:
275 kron_dict[(i,j)]=kron
276

277 #first lets delete the kron(sigma_0,sigma_0) matrix
278 #it is the 4x4 identity matrix and is already included as
279 #the R1=0;S1=1;X1=0;Y1=0;m_X1=0;m_Y1=0 fuzzy harmonic in fuzzy_dict
280 del(kron_dict[(0,0)])
281

282 #now we have to create ladder operators similar to the ones for R=1;S=0.
283 #they get stored in the list kron_ladder
284

285 kron_ladder=[(kron_dict[(1,0)]-1j*kron_dict[(2,3)])/2,\
286 (kron_dict[(1,0)]+1j*kron_dict[(2,3)])/2,\
287 (kron_dict[(2,2)]+1j*kron_dict[(2,1)])/2,\
288 (kron_dict[(2,2)]-1j*kron_dict[(2,1)])/2,kron_dict[(3,0)]]
289

290 #now like before we loop through all the ladder operators
291 #and find out the corresponding X1,Y1,m_X1,m_Y1 values
292 #and store them in the fuzzy_dict

A. Complete python implementation 60

293 for i,fuzzy in enumerate(kron_ladder):
294 if Casimir_test(fuzzy, R1, S1)==True:
295 print("kron_",i, "Casimir^2 test fulfilled")
296 for (X1,Y1) in all_SO4(R1, S1):
297 if X_Y_test(fuzzy, X1, Y1)==True:
298 print("X1=",X1); print("Y1=",Y1)
299 for m_X1 in np.arange(-X1, X1+1):
300 for m_Y1 in np.arange(-Y1,Y1+1):
301 if mx_test(fuzzy,m_X1)==True and my_test(fuzzy,m_Y1)==True:
302 print("m_x=",m_X1); print("m_y=",m_Y1)
303 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]=fuzzy
304

305

306 #now we have all 4d representations of the 16 fuzzy harmonics in fuzzy_dict
307 #and can test the eigenvalue equations on all of them
308

309 fuzzy_ev_test=True
310 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
311 if not fuzzy_test(fuzzy, R1, S1, X1, Y1, m_X1, m_Y1)==True:
312 fuzzy_ev_test=False
313 print("eigenvalue equations=", fuzzy_ev_test)
314

315 #reduced matrix element formula:
316 #a sum over all "m" would have to be included if there is outer multiplicity
317

318 R=0.5;S=0
319 red_mat_el_formula={}
320 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in fuzzy_dict.items():
321 summe=0
322 for (X1_p,Y1_p) in all_SO4(R,S):
323 for (X2_p,Y2_p) in all_SO4(R,S):
324 summe+=(-1)**(complex(X2_p-X1_p+Y2_p-Y1_p))*np.sqrt(2*X1_p+1)*\
325 np.sqrt(2*Y1_p+1)*np.sqrt(2*X2_p+1)*np.sqrt(2*Y2_p+1)*\
326 reduced_cc(R,S,X2_p,Y2_p,R1,S1,X1,Y1,R,S,X1_p,Y1_p,0)*\
327 reduced_cc(R,S,X1_p,Y1_p,R1,S1,X1,Y1,R,S,X2_p,Y2_p,0)
328 RHS=(-1)**(complex(1+R1-S1-X1-Y1))*1/((2*X1+1)*(2*Y1+1))*summe
329 red_mat_el_formula[(R1,S1,X1,Y1,m_X1,m_Y1)]=1/(np.sqrt(RHS))
330

331 #now onto normalization:
332 def fuzzy_size(R,S,X,Y,m_X,m_Y):
333 fuzzy_matrix=np.matrix(fuzzy_dict[(R,S,X,Y,m_X,m_Y)])
334 return np.trace(np.dot(fuzzy_matrix, fuzzy_matrix.H))
335

336 #normalization on a single fuzzy
337

338 # check on R1=0,S1=0,X1=0,Y1=0,m_X1=0,m_Y1=0 fuzzy
339 R1=0;S1=0;X1=0;Y1=0;m_X1=0;m_Y1=0
340 print(fuzzy_size(R1, S1, X1, Y1, m_X1, m_Y1))
341

A. Complete python implementation 61

342 # the product of fuzzy and fuzzy^dagger has a trace of 4
343 # division by sqrt(4)=2 ==> fuzzy properly normalized
344 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]=1/2*fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]
345 print(fuzzy_size(R1, S1, X1, Y1, m_X1, m_Y1))
346

347 #loop through all fuzzys and divide by np.trace(Y*Y^dagger)
348 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
349 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]=fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]\
350 *1/(np.sqrt(fuzzy_size(R1,S1,X1,Y1,m_X1,m_Y1)))
351

352 #check weather the fuzzys are properly normalized
353

354 norm_test=True
355 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
356 if not math.isclose(np.real(fuzzy_size(R1,S1,X1,Y1,m_X1,m_Y1)),1,\
357 rel_tol=1e-4)==True:
358 norm_test=False
359 print(R1,S1,X1,Y1,m_X1,m_Y1)
360 print("normalization=",norm_test)
361

362 #conjugation properties
363

364 def conjugation_test_1(R,S,X,Y,m_X,m_Y):
365 LHS=np.conjugate(fuzzy_dict[(R,S,X,Y,m_X,m_Y)])
366 RHS=-fuzzy_dict[(R,S,X,Y,m_X,m_Y)]
367 if np.array_equal(LHS, RHS)==True:
368 return True
369 else:
370 return False
371

372 def conjugation_test_2(R,S,X,Y,m_X,m_Y):
373 fuzzy_matrix_transpose=np.matrix(fuzzy_dict[(R,S,X,Y,m_X,m_Y)]).H
374 fuzzy_matrix_compare=(-1)**complex(1+R-S+X+Y+m_X+m_Y)*\
375 np.matrix(fuzzy_dict[(R,S,X,Y,-m_X,-m_Y)])
376 if np.array_equal(fuzzy_matrix_transpose,fuzzy_matrix_compare)==True:
377 return True
378 else:
379 return False
380

381 #start with conjugation 1 on a single fuzzy:
382

383 #R1=0,S1=0,X1=0,Y1=0,m_X1=0,m_Y1=0 fuzzy ==>conjugation property 1 doesn’t hold:
384 R1=0;S1=0;X1=0;Y1=0;m_X1=0;m_Y1=0
385 print("conj property 1 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
386 conjugation_test_1(R1 , S1, X1, Y1, m_X1, m_Y1))
387 #however if we multiply it by 1j it does:
388 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]=1j*fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]
389 print("conj property 1 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
390 conjugation_test_1(R1 , S1, X1, Y1, m_X1, m_Y1))

A. Complete python implementation 62

391 #run through all the fuzzys in fuzzy_dict and check conjugation property 1
392 #if it’s not fulfilled multiply the corresponding fuzzy by 1j
393 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
394 if not conjugation_test_1(R1, S1, X1, Y1, m_X1, m_Y1)==True:
395 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]*=1j
396

397 #conjugation 2 on a single fuzzy:
398

399 R1=0.5;S1=0.5;X1=0.5;Y1=0.5;m_X1=-0.5;m_Y1=0.5
400 print("conj property 1 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
401 conjugation_test_1(R1 , S1, X1, Y1, m_X1, m_Y1))
402 print("conj property 2 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
403 conjugation_test_2(R1 , S1, X1, Y1, m_X1, m_Y1))
404

405 #however if we multiply Y_(R1,S1,X1,Y1,m_X1,m_Y1) by -1 it does:
406 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]=-1*fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]
407 fuzzy_dict[(R1,S1,X1,Y1,-m_X1,-m_Y1)]=1*fuzzy_dict[(R1,S1,X1,Y1,-m_X1,-m_Y1)]
408

409 print("conj property 1 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
410 conjugation_test_1(R1 , S1, X1, Y1, m_X1, m_Y1))
411 print("conj property 2 on ",(R1,S1,X1,Y1,m_X1,m_Y1),"=",\
412 conjugation_test_2(R1 , S1, X1, Y1, m_X1, m_Y1))
413

414 #run through all the fuzzys in fuzzy_dict and check conjugation property 2
415 #if it’s not fulfilled we multiply Y_(R1,S1,X1,Y1,m_X1,m_Y1) by -1
416 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
417 if not conjugation_test_2(R1, S1, X1, Y1, m_X1, m_Y1)==True:
418 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]*=-1
419

420 #now lets check if all fuzzy fulfill the conjugation properties:
421

422 conj_test=True
423 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
424 if not conjugation_test_1(R1, S1, X1, Y1, m_X1, m_Y1)==True:
425 conj_test=False
426 print("conjugation property 1=", conj_test)
427

428 conj_test=True
429 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in list(fuzzy_dict.items()):
430 if not conjugation_test_2(R1, S1, X1, Y1, m_X1, m_Y1)==True:
431 conj_test=False
432 print((R1,S1,X1,Y1,m_X1,m_Y1))
433 print("conjugation property 2=", conj_test)
434

435

436 # still a phase choice of +1/-1 for each fuzzy
437 # it should be chosen such that the reduced matrix elements from
438 #the wigner eckhart theorem and from the formula match
439

A. Complete python implementation 63

440 # getting the fuzzy_red_mat_el directly from the wigner eckhart theorem
441 #first storing the vectors with their (R,S,X,Y,mx_my) eigenvalues
442

443 # 4d column vector with labels R=0.5, S=0, X=0.5, m_X=-0.5, Y=0, m_Y=0
444 vec0=np.array([0,1,0,0])
445

446 #X eigenvalue equations:
447 S_X3=np.dot(gen_dict_so3xso3["X3"],vec0)
448 S_X_square=np.dot(np.dot(gen_dict_so3xso3["X3"],gen_dict_so3xso3["X3"]),vec0)+ \
449 np.dot(np.dot(gen_dict_so3xso3["X2"],gen_dict_so3xso3["X2"]),vec0)+ \
450 np.dot(np.dot(gen_dict_so3xso3["X1"],gen_dict_so3xso3["X1"]),vec0)
451

452 #Y eigenvalue equations:
453 S_Y3=np.dot(gen_dict_so3xso3["Y3"],vec0)
454 S_Y_square=np.dot(np.dot(gen_dict_so3xso3["Y3"],gen_dict_so3xso3["Y3"]),vec0)+ \
455 np.dot(np.dot(gen_dict_so3xso3["Y2"],gen_dict_so3xso3["Y2"]),vec0)+ \
456 np.dot(np.dot(gen_dict_so3xso3["Y1"],gen_dict_so3xso3["Y1"]),vec0)
457

458 #SO(5) casimir square operator eigenvalue equation:
459

460 S_Casimir=np.zeros(4,dtype=complex)
461 for (g_i,g_j) in [(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)]:
462 S_Casimir+=np.dot(np.dot(gen_dict[(g_i,g_j)],gen_dict[(g_i,g_j)]), vec0)
463

464 #all eigenvalue equations are fulfilled
465 #the remaining vectors:
466 #R=0.5, S=0, X=0.5, m_X=0.5, Y=0, m_Y=0
467 vec1=np.array([1,0,0,0])
468 #R=0.5, S=0, X=0, m_X=0, Y=0.5, m_Y=0.5
469 vec2=np.array([0,0,1,0])
470 #R=0.5, S=0, X=0, m_X=0, Y=0.5, m_Y=-0.5
471 vec3=np.array([0,0,0,1])
472

473 vec_dict={(0.5,0,0.5,0,-0.5,0):vec0,(0.5,0,0.5,0,0.5,0):vec1,\
474 (0.5,0,0,0.5,0,0.5):vec2,(0.5,0,0,0.5,0,-0.5):vec3}
475

476 #now evaluating the reduced matrix element using the wigner eckhart theorem
477 #and storing them in a dictionary
478 #{[(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),\
479 # (R’,S’,X’,Y’,m_X’,m_Y’)]:red_mat_el_we}
480

481 red_mat_el_we={}
482 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in fuzzy_dict.items():
483 for (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p),ket_vec in vec_dict.items():
484 for (R,S,X,Y,m_X,m_Y),bra_vec in vec_dict.items():
485 LHS=np.dot(bra_vec,np.dot(fuzzy,ket_vec))
486 RHS=reduced_cc(R_p,S_p,X_p,Y_p,R1,S1,X1,Y1,R,S,X,Y,0)\
487 *complex(CG(X_p, m_X_p, X1, m_X1, X, m_X).doit())\
488 *complex(CG(Y_p, m_Y_p, Y1, m_Y1, Y, m_Y).doit())

A. Complete python implementation 64

489 if LHS==0:
490 red_mat_el_we[(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),\
491 (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)]=0
492 else:
493 red_mat_el_we[(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),\
494 (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)]=LHS/RHS
495

496 #observation: the value of the red_mat_el for a fixed (R1,S1,X1,Y1,m_X1,m_Y1),
497 #if nonzero doesn’t depend on X,Y,mx,my,X_p,Y_P,mx_p,my_p
498

499 #pick out this value for each fuzzy and stor it in a smaller dict:
500

501 red_mat_el_we_small={}
502

503 for [(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),(R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)],\
504 red_mat_el in red_mat_el_we.items():
505 if not red_mat_el==0:
506 red_mat_el_we_small[(R1,S1,X1,Y1,m_X1,m_Y1)]=red_mat_el
507

508 #now choose the +1/-1 prefactor such that phases of reduced matrix elements
509 #from wigner eckhart and formula match
510

511 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in fuzzy_dict.items():
512 if not np.angle(red_mat_el_we_small[(R1, S1, X1, Y1, m_X1, m_Y1)])\
513 ==np.angle(red_mat_el_formula[(R1, S1, X1, Y1, m_X1, m_Y1)]):
514 fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)]*=-1
515

516 #now recalculate the red_mat_el_we from the wigner eckhart theorem:
517 red_mat_el_we={}
518 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy in fuzzy_dict.items():
519 for (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p),ket_vec in vec_dict.items():
520 for (R,S,X,Y,m_X,m_Y),bra_vec in vec_dict.items():
521 LHS=np.dot(bra_vec,np.dot(fuzzy,ket_vec))
522 RHS=reduced_cc(R_p,S_p,X_p,Y_p,R1,S1,X1,Y1,R,S,X,Y,0)\
523 *complex(CG(X_p, m_X_p, X1, m_X1, X, m_X).doit())\
524 *complex(CG(Y_p, m_Y_p, Y1, m_Y1, Y, m_Y).doit())
525 if LHS==0:
526 red_mat_el_we[(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),\
527 (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)]=0
528 else:
529 red_mat_el_we[(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),\
530 (R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)]=LHS/RHS
531

532 red_mat_el_we_small={}
533 for [(R1,S1,X1,Y1,m_X1,m_Y1),(R,S,X,Y,m_X,m_Y),(R_p,S_p,X_p,Y_p,m_X_p,m_Y_p)],\
534 red_mat_el in red_mat_el_we.items():
535 if not red_mat_el==0:
536 red_mat_el_we_small[(R1,S1,X1,Y1,m_X1,m_Y1)]=red_mat_el
537 #all phases match !!!

A. Complete python implementation 65

538 def fusion_so5(R1,S1,X1,Y1,m_X1,m_Y1,R2,S2,X2,Y2,m_X2,m_Y2,\
539 R3,S3,X3,Y3,m_X3,m_Y3,R,S,m):
540 """returns the fusion coefficient F^(L3)_(L1,L2) with L=(R,S,X,Y,m_X,m_Y)
541 R,S determine the dimension of the representation of the fuzzy harmonics
542 the variable m labels the different reduced coupling coefficients
543 if there is outer multiplicity present
544 In this case the label "m" would have to be taken extra care of """
545 phase1=(-1)**complex(1+R3-S3+m_X3+m_Y3-X1-Y1-X2-Y2)
546 pref1=red_mat_el_formula[(R1,S1,X1,Y1,m_X1,m_Y1)]*\
547 red_mat_el_formula[(R2,S2,X2,Y2,m_X2,m_Y2)]*\
548 red_mat_el_formula[(R3,S3,X3,Y3,-m_X3,-m_Y3)]
549 summe=0
550 for (X1p,Y1p) in all_SO4(R, S):
551 for (X2p,Y2p) in all_SO4(R, S):
552 for (X3p,Y3p) in all_SO4(R, S):
553 red_cc_prod=reduced_cc(R,S,X2p,Y2p,R1,S1,X1,Y1,R,S,X1p,Y1p,m)\
554 *reduced_cc(R,S,X3p,Y3p,R2,S2,X2,Y2,R,S,X2p,Y2p,m)\
555 *reduced_cc(R,S,X1p,Y1p,R3,S3,X3,Y3,R,S,X3p,Y3p,m)
556 if not red_cc_prod==0:
557 for m_X1p in np.arange(-X1p,X1p+1):
558 for m_Y1p in np.arange(-Y1p,Y1p+1):
559 for m_X2p in np.arange(-X2p,X2p+1):
560 for m_Y2p in np.arange(-Y2p,Y2p+1):
561 for m_X3p in np.arange(-X3p,X3p+1):
562 for m_Y3p in np.arange(-Y3p,Y3p+1):
563 pref2=np.sqrt((2*X1p+1)*\
564 (2*X2p+1)*(2*X3p+1)*(2*Y1p+1)*\
565 (2*Y2p+1)*(2*Y3p+1))
566 phase2=(-1)**complex(X1p+X2p+X3p+\
567 Y1p+Y2p+Y3p+mx1p+mx2p+mx3p\
568 +my1p+my2p+my3p)
569 j_prod=complex(wigner_3j(X2p,X1,X1p\
570 ,mx2p,mx1,-mx1p))\
571 *complex(wigner_3j(X3p,X2,X2p\
572 ,mx3p,mx2,-mx2p))\
573 *complex(wigner_3j(X1p,X3,X3p\
574 ,mx1p,-mx3,-mx3p))\
575 *complex(wigner_3j(Y2p,Y1,Y1p\
576 ,my2p,my1,-my1p))\
577 *complex(wigner_3j(Y3p,Y2,Y2p\
578 ,my3p,my2,-my2p))\
579 *complex(wigner_3j(Y1p,Y3,Y3p\
580 ,my1p,-my3,-my3p))
581 summe+=pref2*phase2*\
582 red_cc_prod*j_prod
583 else:
584 summe+=0
585 result=pref1*phase1*summe
586 return result

A. Complete python implementation 66

587 #now onto the fusion coefficient testing
588 R=0.5;S=0;m=0
589 #first the multiplication of two arbitrary fuzzys
590 R1=1;S1=0;X1=1;Y1=0;m_X1=1;m_Y1=0
591 R2=1;S2=0;X2=1;Y2= 0;m_X2= -1;m_Y2= 0
592

593 fusion_prod1=np.dot(fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)],\
594 fuzzy_dict[(R2,S2,X2,Y2,m_X2,m_Y2)])
595 fusion_summe1=0.5j*fuzzy_dict[(0.5,0.5,0,0,0,0)]-0.5j*fuzzy_dict[(0,0,0,0,0,0)]\
596 +1j/np.sqrt(2)*fuzzy_dict[(1,0,1,0,0,0)]
597

598 #this means fusion_so5(1,0,1,0,1,0,1,0,1,0,-1,0,0.5,0.5,0,0,0,0) has to be -0.5j
599 R3=0.5;S3=0.5;X3=0;Y3=0;m_X3=0;m_Y3=0
600 print("fusion_cc_1=",np.round(fusion_so5(R1,S1,X1,Y1,m_X1,m_Y1,\
601 R2,S2,X2,Y2,m_X2,m_Y2,R3,S3,X3,Y3,m_X3,m_Y3,R,S,m),15))
602 R3=1;S3=0;X3=1;Y3=0;mx3=0;my3=0
603 print("fusion_cc_2=",np.round(fusion_so5(R1, S1, X1, Y1, mx1, my1,\
604 R2,S2,X2,Y2,m_X2,m_Y2,R3,S3,X3,Y3,m_X3,m_Y3,R,S,m),15))
605 R3=0;S3=0;X3=0;Y3=0;mx3=0;my3=0
606 print("fusion_cc_3=",np.round(fusion_so5(R1, S1, X1, Y1, mx1, my1,\
607 R2,S2,X2,Y2,m_X2,m_Y2,R3,S3,X3,Y3,m_X3,m_Y3,R,S,m),15))
608

609 #another example of multiplication of two fuzzies
610 R1=1;S1=0;X1=1;Y1=0;m_X1=0;m_Y1=0
611 R2=1;S2=0;X2=0.5;Y2= 0.5;m_X2=0.5;m_Y2=0.5
612

613 fusion_prod2=np.dot(fuzzy_dict[(R1,S1,X1,Y1,m_X1,m_Y1)],\
614 fuzzy_dict[(R2,S2,X2,Y2,m_X2,m_Y2)])
615 fusion_summe2=0
616 for (R3,S3,X3,Y3,m_X3,m_Y3),fuzzy3 in fuzzy_dict.items():
617 fusion_summe2+=fusion_so5(R1,S1,X1,Y1,m_X1,m_Y1,R2,S2,X2,Y2,m_X2,m_Y2\
618 ,R3,S3,X3,Y3,m_X3,m_Y3,R,S,m)*fuzzy3
619

620 #test all fusion coefficients:
621 fusion_test=True
622 for (R1,S1,X1,Y1,m_X1,m_Y1),fuzzy1 in fuzzy_dict.items():
623 for (R2,S2,X2,Y2,m_X2,m_Y2),fuzzy2 in fuzzy_dict.items():
624 prod=np.dot(fuzzy1,fuzzy2)
625 summe=0
626 for (R3,S3,X3,Y3,m_X3,m_Y3),fuzzy3 in fuzzy_dict.items():
627 summe+=fusion_so5(R1,S1,X1,Y1,m_X1,m_Y1,R2,S2,X2,Y2,m_X2,m_Y2\
628 ,R3,S3,X3,Y3,m_X3,m_Y3,R,S,m)*fuzzy3
629 if not np.allclose(prod, summe,rtol=1e-4,atol=1e-7)==True:
630 fusion_test=False
631 print([(R1,S1,X1,Y1,m_X1,m_Y1),(R2,S2,X2,Y2,m_X2,m_Y2)],"wrong")
632 else:
633 print([(R1,S1,X1,Y1,m_X1,m_Y1),(R2,S2,X2,Y2,m_X2,m_Y2)],"correct")
634 print("complete fusion testing=",fusion_test)
635 #test succesful !!!

Bibliography 67

Bibliography
[kil19] kilian. Graph theory 101. 2019. URL: https:

//bionerdnotes.wordpress.com/2019/08/14/graph-theory-101/
(visited on 08/06/2023).

[Zee16] Anthony Zee. Group theory in a Nutshell for Physicists. Princeton, New Jersey 08540:
Princeton University Press, 2016. ISBN: 978-0-691-16269-0.

[Czy08] Gerd Czycholl. Theoretische Festkörperphysik. Von den klassischen Modellen zu
modernen Forschungsthemen. Deutsch. Springer-Verlag Berlin Heidelberg, 2008. ISBN:
978-3-540-74789-5.

[Geo00] Howard Georgi. Lie Algebras In Particle Physics: from Isospin To Unified Theories.
CRC Press, 2000. DOI: 10.1201/9780429499210.

[Ish+10] Hajime Ishimori et al. “Non-Abelian Discrete Symmetries in Particle Physics”. In:
Progress of Theoretical Physics Supplement 183 (2010), pp. 1–163. DOI:
10.1143/ptps.183.1.

[Lom59] Justin Paul Lomont. Applications of Finite Groups. Academic Press, 1959. ISBN:
978-1-4832-3132-7. DOI: 10.1016/C2013-0-12379-3.

[GL12] Walter Grimus and Patrick Otto Ludl. “Finite flavour groups of fermions”. In: Journal of
Physics A: Mathematical and Theoretical 45.23 (May 2012), p. 233001. DOI:
10.1088/1751-8113/45/23/233001.

[Tre07] Hans-Werner Trebin. Gruppentheoretheoretische Methoden in der Physik. Skript zur
Vorlesung. Deutsch. 2007.

[BC79] Benjamin Baumslag and Bruce Chandler. Gruppentheorie [Theory and Problems of
Group Theory]. Theorie und Anwendung. Deutsch. Trans. by Bernhard Thomas.
McGraw-Hill Book Company GmbH, 1979. ISBN: 0-07-092026-6.

[SK11] Yoland Savriama and Chris Klingenberg. “Beyond bilateral symmetry: Geometric
morphometric methods for any type of symmetry”. In: BMC Evolutionary Biology
11.280 (Sept. 2011). DOI: 10.1186/1471-2148-11-280.

[Böh11] Manfred Böhm. Lie-Gruppen und Lie-Algebren in der Physik. German. Springer-Verlag
Berlin Heidelberg, 2011. ISBN: 978-3-642-20378-7.

[DL15] Oliver Deiser and Caroline Lasser. Erste Hilfe in Linearer Algebra. Deutsch.
Springer-Verlag Berlin Heidelberg, 2015. ISBN: 978-3-642-41626-2. URL:
https://www.aleph1.info/?call=Puc&permalink=ela1.

https://bionerdnotes.wordpress.com/2019/08/14/graph-theory-101/
https://bionerdnotes.wordpress.com/2019/08/14/graph-theory-101/
https://doi.org/10.1201/9780429499210
https://doi.org/10.1143/ptps.183.1
https://doi.org/10.1016/C2013-0-12379-3
https://doi.org/10.1088/1751-8113/45/23/233001
https://doi.org/10.1186/1471-2148-11-280
https://www.aleph1.info/?call=Puc&permalink=ela1

Bibliography 68

[Fis09] G. Fischer. Lineare Algebra. Springer-Verlag Berlin Heidelberg, 2009. ISBN:
9783834809964. DOI: 10.1007/978-3-658-03945-5.

[Lug21] Gabriel Lugo. Differential Geometry in Physics. University of North Carolina
Wilmington, 2021. ISBN: 9781469669250. DOI: 10.5149/9781469669267.

[Sch80] Bernard Schutz. Geometrical Methods of Mathematical Physics. Cambridge University
Press, 1980. ISBN: 978-0-521-29887-2. DOI: 10.1017/CBO9781139171540.

[RS22] Joel W. Robbin and Dietmar A. Salamon. Introduction to Differential Geometry.
Springer Berlin Heidelberg, 2022. ISBN: 9783662643396. DOI:
10.1007/978-3-662-64340-2.

[TN08] TN. File:Tangentialvektor.svg. 2008. URL: https:
//commons.wikimedia.org/wiki/File:Tangentialvektor.svg
(visited on 05/23/2023).

[Che15] Evan Chen. Constructing the Tangent and Cotangent Space. 2015. URL:
https://blog.evanchen.cc/2015/10/04/constructing-the-
tangent-and-cotangent-space/ (visited on 05/24/2023).

[Jev11] Nadir Jevanjee. An Introduction to Tensors and Group Theory for Physicists. Springer
Berlin Heidelberg, 2011. ISBN: 978-0-8176-4714-8. DOI:
10.1007/978-0-8176-4715-5.

[Sch13] Franz Schwabl. Quantenmechanik: Eine Einführung. Springer-Verlag Berlin
Heidelberg, 2013. ISBN: 9783662096291. DOI: 10.1007/978-3-540-73675-2.

[Hal00] Brian C. Hall. An Elementary Introduction to Groups and Representations. 2000. URL:
https://arxiv.org/pdf/math-ph/0005032.pdf.

[CSM10] M. A. Caprio, K. D. Sviratcheva, and A. E. McCoy. “Racah’s method for general
subalgebra chains: Coupling coefficients of SO(5) in canonical and physical bases”. In:
Journal of Mathematical Physics 51.9 (Sept. 2010), p. 093518. DOI:
10.1063/1.3445529.

[Rac49] Giulio Racah. “Theory of Complex Spectra. IV”. In: Phys. Rev. 76 (9 Nov. 1949),
pp. 1352–1365. DOI: 10.1103/PhysRev.76.1352.

[VMK88] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii. Quantum Theory of Angular
Momentum. World Scientific, 1988. DOI: 10.1142/0270.

[MO03] Julieta Medina and Denjoe O’Connor. “Scalar field theory on fuzzyiS/isup4/sup”. In:
Journal of High Energy Physics 2003.11 (Nov. 2003), pp. 051–051. DOI:
10.1088/1126-6708/2003/11/051.

[Mad92] John Andrew Madore. “The fuzzy sphere”. In: Classical and Quantum Gravity 9.1 (Jan.
1992), p. 69. DOI: 10.1088/0264-9381/9/1/008.

https://doi.org/10.1007/978-3-658-03945-5
https://doi.org/10.5149/9781469669267
https://doi.org/10.1017/CBO9781139171540
https://doi.org/10.1007/978-3-662-64340-2
https://commons.wikimedia.org/wiki/File:Tangentialvektor.svg
https://commons.wikimedia.org/wiki/File:Tangentialvektor.svg
https://blog.evanchen.cc/2015/10/04/constructing-the-tangent-and-cotangent-space/
https://blog.evanchen.cc/2015/10/04/constructing-the-tangent-and-cotangent-space/
https://doi.org/10.1007/978-0-8176-4715-5
https://doi.org/10.1007/978-3-540-73675-2
https://arxiv.org/pdf/math-ph/0005032.pdf
https://doi.org/10.1063/1.3445529
https://doi.org/10.1103/PhysRev.76.1352
https://doi.org/10.1142/0270
https://doi.org/10.1088/1126-6708/2003/11/051
https://doi.org/10.1088/0264-9381/9/1/008

Bibliography 69

[Ydr01] Badis Ydri. “Fuzzy Physics”. PhD thesis. Syracuse University, Oct. 2001. URL:
https:
//www.researchgate.net/publication/47454379_Fuzzy_Physics.

[Mat23] Wolfram Mathworld. Wigner 3j-Symbol. 2023. URL:
https://mathworld.wolfram.com/Wigner3j-Symbol.html (visited on
10/13/2023).

[GV18] Aleix Gimenez Grau and Matthias Volk. “One-Loop One-Point Functions in
-Non-Supersymmetric AdS/dCFT”. PhD thesis. University of Kopenhagen, Aug. 2018.

[Hec65] Karl Hecht. “Some simple R5 Wigner coefficients and their application”. In: Nuclear
Physics 63.2 (1965), pp. 177–213. ISSN: 0029-5582. DOI:
10.1016/0029-5582(65)90338-X.

https://www.researchgate.net/publication/47454379_Fuzzy_Physics
https://www.researchgate.net/publication/47454379_Fuzzy_Physics
https://mathworld.wolfram.com/Wigner3j-Symbol.html
https://doi.org/10.1016/0029-5582(65)90338-X

	Introduction
	Basics
	Group definition
	Finite groups
	Ex.: Cyclic group of order 4: Z4
	Ex.: The symmetric group of degree 3: S3

	Countably infinite groups
	Ex.: Additive group of integers
	Ex.: Multiplicative group of rational numbers

	Continuous groups
	Ex.: Rotations in a plane: SO(2)
	Ex.: General linear group: GL(n,R/C)

	Representation theory
	Trivial representation and faithfulness
	Ex.: The representations of S3
	Equivalent representations
	Reducible and irreducible representations
	Restriction to a subgroup

	The Lie-Algebra
	Ex.: SO(2)
	Manifolds and tangent spaces
	Commutation relation of the Lie-algebra
	Generalization to SO(3) and SO(N)
	Lie-Algebra representations

	Tensor product of representations and coupling coefficients
	Definition and Properties
	Tensor product representations
	Coupling-coefficients

	Computation of coupling coefficients
	Method
	Ex.: SO(5) coupling coefficients

	Implementation in python
	Ex.1: 1d-nullspace bold0mu mumu (1212)(120)(120)(1212)(120)(120)!(1212)(120)(120)(1212)(120)(120)(1212)(120)(120)(1212)(120)(120)
	Ex.2: 2d-nullspace bold0mu mumu (10)(112)(112)(10)(112)(112)!(10)(112)(112)(10)(112)(112)(10)(112)(112)(10)(112)(112)

	Fusion coefficients for fuzzy harmonics
	Fuzzy harmonics on bold0mu mumu S2S2!S2S2S2S2
	Ex.: 2d-representation of bold0mu mumu lmlm!lmlmlmlm

	Fuzzy harmonics on bold0mu mumu S4S4!S4S4S4S4
	Ex.: 4d-representation of bold0mu mumu !

	Conclusion
	Complete python implementation
	Coupling coefficients of SO(5)
	Fusion coefficients for fuzzy harmonics
	Fuzzy harmonics on S2
	Fuzzy harmonics on S4

